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Figure 1: Bidirectional Path Tracing (left, 212 spp) compared to Path Tracing
with Next Event Backtracking (341 spp, equal time 15 min). Bidirectional Path
Tracing and many more methods fail to produce the caustic in this scenario,
because the light paths rarely hit the small teapot. Our method implicitly
guides the light paths to the important regions and scales well for large scenes
and many lights.

Abstract

In light transport simulation, challenging situations are caused by the
variety of materials and the relative length of path segments. Path Tracing
can handle many situations and scales well to parallel hardware. However,
it is not able to produce paths which have a smooth surface in connection
with a small light source. Here, photon transports perform superior, which
can be ineffective if the smooth object is small compared to the scene size.

We propose to use the last segment of a Path Tracer path as the first
segment of a photon path. As a result, the strengths of next event es-
timation are inherited by the photon transport and photons are guided
toward the regions where they are most useful. To that end, we deve-
loped a lock-free sparse octree, which we use for fast and robust density
estimates. Summarizing, the new method can outperform state of the art
algorithms like Vertex Connection and Merging in certain scenarios.
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1 Introduction

In stochastic light transport simulation there are three basic operators to create
light paths: random walks, connections and merges. Random walks start at
the observer or a light source and use ray tracing to find the next intersection
point (vertex) in a randomly sampled direction. If they hit a surface with the
adjoint quantity, a full light transport path is found. Random walks have a
high chance for finding contributions if there are large light sources and/or the
path to the light source is close to deterministic (for example, if the emitter is
directly visible or reflected by mirrors).

Connections can be created from each vertex of a random walk path. By
choosing a random point on an adjoint surface, a contribution can be computed
over arbitrary large distances. This is called Next Event Estimation (NEE),
because the next event in the random walk could be the very same location.
The strength of NEE is that it can find light sources with a very small solid
angle, which have a much smaller probability to be found via random walk
alone. Additionally, it is possible to use binary trees to select connection points
proportional to their expected contribution to reduce the variance.

Finally, merges combine the vertices of two random walks by assuming they
hit the same point, although they might be separated by a small distance.
That means, if the end points of two paths have a distance smaller than some
threshold, they are combined to a full contribution path. In general, merges
have one more random sampling event than random walks and connections,
leading to a higher variance in the first place. However, their strength comes
from the fact that neighbor points can be searched in the large set of vertices
over all paths (often millions). Merges are the only really successful operator to
find the difficult specular-diffuse-specular (SDS) paths.

We combine connections and merges by using the connection segment as
the first path segment of a new light walk. Thus, merges inherit the strengths
of next event estimation. Therefore, the vertices, from which the connections
were initiated, are transformed into photon-emitting virtual light sources. This
requires an estimate of the density of such NEE vertices. For that purpose, we
introduce a new octree-based data structure which is faster than kd-tree-based
neighborhood searches. Independent of the used data structure, every density
estimate over a finite area will be biased and noisy, leading to a small bias in
our new method.

2 Related Work

The foundation of our method is the Path Tracing (PT) algorithm which goes
back to Kayjia [Kaj86]. Today, it is widely used in production renderers [FHF∗17]
due to its simplicity and extensibility. It combines the two operators random
walk and NEE by weighting the two independent estimates with respect to their
effectiveness for each individual path. This combination of two or more samplers
for the same quantity is called Multiple Importance Sampling (MIS) in Monte
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Carlo-based simulations. In graphics, the balance or power heuristic are used
to compute the weights. They were introduced by Veach and Guibas [VG95b]
and extended to a large set of operators since then.

PT can handle many situations, but fails for caustics and SDS paths. Bi-
directional Path Tracing (BPT) [VG95a, LW93] is a stronger method. It uses
a random walk from the observer and another one from the light source, and
computes all connections between the vertices of the two paths. It is able to
find caustics, but still fails for SDS paths.

The only successful methods to efficiently find SDS paths are based on pho-
ton transports. Photon mapping [Jen96] is able to produce caustic and SDS
paths, but has problems with the scene scale. Large scenes or small specular
objects as well as many light sources can lead to highly noisy results. Jensen
already used a dedicated Caustic Map where photons are explicitly send into
directions of specular objects. This will still fail if there are many large specular
objects and requires a generalization for glossy objects. Contrarily, NEB shoots
photons into important regions independent of the material.

Similarly, the first importance based method to distribute photons was in-
troduced by Peter and Pietrek [PP98]. It uses piecewise constant functions,
created from the importance information of a view path tracing pass, to distri-
bute photons. Due to this piecewise approximation the method has problems
with highly glossy surfaces. The major difference to NEB is that the guidance
in NEB will happen implicitly.

A different approach to improve the photon map quality is to stir the de-
position of photons. Suykens and Willems [SW00] fixed the photon mapping
density to a constant, which reduces the number of photons in bright regions.
Likewise, Keller and Wald [KW00] used an importance map to control the den-
sity of stored photons. However, both methods are still sampling a large number
of photons paths and only reduce the number of stored photons, wasting the
others.

Georgiev et al. [GKDS12] and Hachisuka et al. [HPJ12] simultaneously intro-
duced the MIS-weight computation to successfully combine BPT with merges.
The Vertex Connection and Merging (VCM) algorithm is one of the most robust
methods so far. Still, it may fail for selected situations, where the MIS-weight
underestimates the variance of certain merge events. This issue was overcome
by Jendersie et al. [JG18, Jen19] with a small change to the heuristic. While
we only demonstrate our novel operator – the next event backtracking (NEB)
– in Path Tracing, it is possible to integrate it into BPT or VCM, too. Howe-
ver, NEB is already capable of handling many complex light situations without
doing so.

Another important variant of the random walk operator is the Markov Cain
Monte Carlo (MCMC) sampling. Instead of generating independent random
sampling events, MCMC samplers apply small mutations to the paths. Then,
the new mutations are randomly discarded or accepted with respect to a target
function. This allows MCMC samplers to generate distributions of an unknown
function to reduce noise opposed to the näıve walk. For an overview of MCMC
methods we refer to the survey of Šik et al. [ŠK18]. It is thinkable to use NEB
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in connection with MCMC random walks, which we leave as future work.
Manifold Next Event Estimation (MNEE) from Hanika et al. [HDF15] is the

most similar method to ours. There, random connections, which are blocked by
refractive surfaces, are iteratively moved on the surface until they form a valid
path. This iteration requires multiple expensive evaluations and shadow tests
and is biased in case there is an ambiguity of multiple possible lights paths.
Finally, MNEE is not able to find caustics from mirrors and prisms, where the
reflection surface is not blocking the direct connection between the caustic and
the light emitter. NEB shares the weakness in that scenario, but at least handles
it to a better degree than MNEE. We believe that NEB is more robust than
MNEE in general.

Other methods which target the problem of small caustic throwing objects
are based on guidance. A general guidance method like the method from Müller
et al. [MGN17] reduces the overall variance in all sampling events by steering the
samplers into the direction of the adjoint quantity. A method which explicitly
targets the exploration of visible caustics was invented by Hachisuka and Jensen
[HJ11]. It uses MCMC sampling for the light paths with the visibility of caustics
as target function. Recently, Grittman et al. [GPGSK18] improved the caustic
handling in large scenes by restricting the use of photons adaptively and learning
a guidance information at the light emitter. Other than these methods our
NEB does not learn those connections over time. Instead, it samples these cases
explicitly with a much higher density.

3 Next Event Backtracking

The basic idea is simple: whenever a path vertex is connected to a light source,
we use this very same connection as the first segment of a photon path by
creating a virtual light source at the path vertex. This, however, has several
complex implications and a lot of potential for possible modifications. The
outline of the algorithm (Figure 2) is as follows:

1. Trace paths as in Path Tracing

(a) Store the hit-points (called NEE vertex )

2. NEE and photon tracing

(a) Estimate virtual light source density

(b) Compute NEEs

(c) Trace photons and apply contribution directly

(d) [Optional] Trace photons from the light source as usual

3. Compute self emittance contributions
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Figure 2: Algorithm outline: In the first pass a PT is executed and the in-
termediate results are stored. In the second pass photons are traced from the
non-zero-estimate vertices from pass one. Finally the contributions from random
hits, photons and NEE are weighted to compute the final contribution.
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3.1 Trace View Paths

For tracing paths we use a conventional Path Tracer. However, it is not possible
to compute the results for random hits and NEE immediately. To calculate the
MIS weights, it is necessary to know the photon events which itself depend on
the density of NEE vertices (which are being created in this pass). For this
reason the intermediate results for the events must be stored.

3.2 NEE and Photon Tracing

Our overall goal is to transform the stored vertices into virtual light sources
which emit photons. To transform the incident differential irradiance (unit
W m−2), which is available through NEE, into a flux Φ (unit W) we need the
density of source vertices. Effectively, we need to know the area A of the virtual
light source to integrate the incoming irradiance:

Φ = dE · dA =
dE

ρ
. (1)

where ρ is the density of NEE vertices at the current virtual light source. We can
insert dA = 1/ρ because the area, which is associated with each vertex, depends
on this density: If there are more vertices, each one represents a smaller part of
the surface area.

Note that it is not important how the vertices were generated. It only
matters how many vertices are stored in a local area to turn each of them into
an unbiased1 emitter. Especially, the past (sampling events, Russian Roulette,
...) of the view path vertices is not important.

So, in step (a) the density of vertices must be computed at each vertex.
This can be achieved with k-nearest neighbor searches or and additional data
structure. We use a sparse octree to integrate density over regions and time, as
will be detailed in Section 5. The advantage of the octree is a higher performance
and less noise in the estimates.

Now (step (b)), we can compute a next event estimation for each of the
stored vertices and compute its contribution

LE = wE,k · τ(νk) · f(νk,d) · dE (2)

with

d = Direction of NEE

dE = Differential irradiance of NEE

νk = Vertex with index k (camera has index 0)

τ(ν) = Path throughput from MC sampling

k∏
i=0

fi
pi

f(ν,d) = Bidirectional Scattering Distribution Function (BSDF)

wE,k = MIS weight (see Section 4).

1Unbiased, if we know the true density, which is not the case
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Figure 3: MIS-weight computation between several events along the same path.
The shown example path has length ` = 4.

It must be added to the pixel, in which the path originated. The details to
compute the MIS weight wE,k are given in the next section.

Photons can be traced (step (c)) by starting a new random walk at the
current vertex, after applying Equation (1). The first sampling event is based
on the NEE connection direction d as incident direction and the vertex’s BSDF.
It is not necessary to store photons, because we can invert the search for merge
events. Instead of searching for photons around the view path vertices, we can
as well search for view path vertices around photons, which produces identical
results. Therefore, the NEE vertex storage must be some kind of spatial data
structure to support neighborhood searches.

Then the contribution of a photon Φi at νi from direction di for a found
vertex νk is

LP = wP,k,i · τ(νk) · f(νk,di) · Φi ·K(‖νk − νi‖) (3)

where details on the weight will follow in the next section, again. The kernel
K can be the uniform kernel 1/πr2 for the search radius r or any other kernel
used in photon mapping.

Optionally, it is possible to trace photons from the light source (step (d))
and add their contributions the same way as the photons from NEE vertices.
Only the MIS weights must be adapted accordingly. We will show in section 6
that adding those photons complements NEB where it is weakest.

3.3 Compute Self Emittance Contributions

Since it was not possible before step (2.a) to compute the MIS weights properly,
we needed to store random hits of light source in pass 1. Now, we can iterate
over the stored events and compute the contributions

Le = we · τ(νk) · Le(νk) (4)

4 MIS Weights

In our basic algorithm there are three types of events which must be weighted
against each other. When conventional photons are traced too, there is one
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additional event type. Each path of length ` has a single random hit event, one
NEE event if ` ≥ 2 and max(0, `−2) photon merge events as depicted in Figure
3. Optionally, there are max(0, `− 1) merges with usual photons.

In general, MIS-weights can be computed with the balance heuristic [VG95b]
which reads

wj =
njp
∗
j∑

i nip
∗
i

(5)

where p∗ are the path sampling densities of the different events, with respect to
the area measure, and n are the number of samples drawn with the respective
sampler.

For random hits we have ne = 1 and

p∗e =

`−1∏
i=0

pi→i+1 (6)

for the path density up to the vertex k. The Probability Density Functions
(PDFs) pi→i+1 = pi · cos θ/d2 (unit m−2) describe the probability to reach
vertex νi+1 via random sampling of the BSDF at vertex νi with the PDF pi.

The path density for NEEs is defined as

p∗E = p`

`−2∏
i=0

pi→i+1 (7)

where p` is the sampling density per area to sample the specific point on the light
source when attempting a random connection. The number of NEE samples is
usually but not necessarily nE = 1.

Next, we need the PDF for the new photon samplers. It is closely related
to the NEE PDF in Equation (7) because each photon path starts with a next
event estimation and therefore has to use p`. From there, a random walk in
backward direction is performed up to the merge vertex νk. Further, it consists
of another random walk beginning at the observer. Finally, we need the chance
for a successful merge ρ`−1 · πr2/nT with nT being the total number of photon
path starting points, i.e. the number of stored NEE vertices. Together this
gives

p∗P,k = p` ·
ρ`−1 · πr2

nT
·
`−2∏
i=k

pi+1→i ·
k−1∏
i=0

pi→i+1 (8)

and nP = nT for the sampler count because we reuse photons from all paths.
The above merge chance is derived as following: First, it must be proportional
to the size of our search region πr2. The larger the search region, the larger
the chance to find something. Second, we need the probability density per area
to start the respective photon random walk. The density ρ`−1 is the one we
computed in step (2.a). It is the total number of events per area at this start
vertex. Thus, ρ`−1/nT is the PDF per area of a single sample. Both together
give the chance to find the chosen photon sub-path.
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Finally, we have

p∗LP,k = p` · πr2 ·
`−1∏
i=k

pi+1→i ·
k−1∏
i=0

pi→i+1 (9)

for the conventional photons [GKDS12, HPJ12]. The number of samples is
the number of additional photon paths nLP due to global reuse of photons or
nLP = 0 if disabled.

Plugging Equations (6) to (9) and the sampler counts into the balance heu-
ristic (5) gives us the searched weights:

we =
p∗e
psum

wE =
nE · p∗E
psum

wP,k =
nP · p∗P,k

psum
wLP,k =

nLP · p∗LP,k

psum

with psum = p∗e + nE · p∗E + nP

`−2∑
k=1

p∗P,k + nLP

`−1∑
k=1

p∗LP,k (10)

5 Density Estimation

An important point for the correctness and performance of the NEB operator
is the estimate of the density ρ (required in Equation (1)). Density estimation
is a well explored research area for which we refer to the book of Silverman
[Sil86] and the survey of Sheather [She04]. Unfortunately, the density estimation
becomes the bottleneck of the algorithm fast and the choice of the data structure
is very important.

Our first approach was to use a hash-grid to query the number of photons
with a predefined search radius. This is referred to as näıve estimator in Sil-
verman’s book and has a fundamental drawback: Its bias gets very large if the
distribution of NEE vertices is irregular. In low density regions (less than one
vertex per search region) the estimate will always find the query point, but likely
no others. Therefore, it may overestimate the density by an unbounded factor.
On the other hand, in high density regions it will blur the density function more
than necessary.

Our second approach was to use a kd-tree [Ben75] to estimate the density
with the k-nearest neighbor approach. The nearest neighbor approach scales
much better with irregular densities. We found that the bias was acceptable
with a k ≥ 4 neighbors. However, the kd-tree maintenance and query time
dominated our rendering time vastly. We did not try to use faster builder
implementations like the ParKD method from Choi et al. [CKL∗10], because
they would not help to improve the query time performance.

5.1 The Density Octree

To improve performance, we implemented a dedicated data structure for the
density estimate. Other than the hash-grid or the kd-tree, this new data struc-
ture is not able to find the actual vertices because we store particle counts
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Figure 4: Concepts of the density octree. Left: a sparse quadtree with a uniform
count of particles per cell. Right: one possible case for the intersection area
between plane and cube.

explicitly. Therefore, it achieves a speedup of 3000× opposed to the kd-tree
while having a comparable bias.

The idea is to use a sparse octree which stores an atomic counter per cell.
Whenever a vertex is created, it increases the counter of the cell in which it lies
by one. If the number is greater than some predefined threshold, the cell is split
into eight new cells. The resulting tree has large cells in low density regions and
small ones in high density regions, like the kd-tree. An example quadtree (2D
octree) is shown in Figure 4.

5.2 Splitting

If splitting a cell, we need to initialize the eight new cells. Unfortunately, the
distribution of points which filled the cell is not known anymore and we need
to make a guess. Without further knowledge we can only distribute the counter
uniformly to all child cells.

However, dividing the counter by eight, the number of children, systemati-
cally produces an underestimated initialization. The reason is that a 2D surface
only intersects expectedly four of the eight children. Therefore, using the parent
counter divided by four as initialization value turned out to be less biased in
practice. The too large values in cells without an surface intersection do not
matter, since they are never queried.

5.3 Queries

When a query is made, the count c in the respective cell must be converted
to a density. Assuming locally flat surfaces and that the current surface is the
only one inside the cell, the intersection area between the cell’s bounding box B
and the plane P can be calculated. Thereby, the plane is defined by the surface
position p and normal n. Thus, our density estimate is

ρ =
c

|B ∩ P|
=

c

A
, (11)
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Figure 5: Queried density from a 4-nearest neighbor search (left) compared to
the octree results after the first and the fourth iteration.

where the intersection area is computed with

A =


sx · sy, nx =ny =0

sx

∣∣∣∣ 1
nynz

3∑
i=0

εi max (0, 〈n,p〉 − 〈n,bi〉)
∣∣∣∣ , nx =0∣∣∣∣ 1

2nxnynz

7∑
i=0

εi max (0, 〈n,p〉 − 〈n,bi〉)2
∣∣∣∣

(12)

s = b111 − b000

εi =

{
1, i ∈ {000, 011, 101, 110}
−1, i ∈ {100, 010, 001, 111}

.

Here, x, y and z are the indices of the dimensions, s is the size of the box and
εi is the parity of the eight vertices. In the first case, two of the dimensions are
zero. W.l.o.g. only nz 6= 0 is shown. The terms for the other two dimensions are
defined analogously. Similarly, case two shows the situation where one dimension
of n is zero. Again, there are three analogous terms for all dimensions. The third
case applies if no dimension is zero. A derivation can be found in Appendix A.

An advantage of the dedicated structure is that the density can be integrated
over time. Therefore, the split threshold must be increased proportionally to the
iteration count and Equation (11) must be divided by the number of iterations.
This reduces noise and increases the independence between the current sample
set and the density estimate. Figure 5 visualizes the query results and shows
a fast convergence of the estimate. After four iterations the octree already has
significantly less noise than the kd-tree-based search. Unfortunately, there are
small dark points (see image on the right) which are caused by floating-point
precision issues. These can cause too bright photons in the image which are
often hidden by the MIS.

5.4 Memory Layout Details

We store the eight counters of the sibling cells in a consecutive sequence. This
allows us to use a single pointer in a parent to address all its children. Moreover,
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NEB, 68spp NEB + LP, 14spp

Figure 6: Equal time comparison (5 min) without and with additional photons
(Option 2.c., Section 6.1) in a light bulb scenario.

it is possible to encode the counter and the child index in the same integer to
save memory. If the stored value is negative, its absolute value is the index of
the first child node. Otherwise it is a counter.

The aforementioned split threshold is set to four in our implementation.
Using larger numbers introduces too much bias, because the blurring area in-
creases and the planar surface assumption is less valid. Using smaller numbers
increases the memory consumption and leads to more noise.

The necessary memory depends on two factors only: the expected number
of NEE vertices divided by the split threshold. Particularly, it is independent of
the scene. For typical setups the density octree requires less than 50 MB (often
less than 10 MB suffice).

For more details on the lock-free implementation, we provide the code in
Appendix B.

6 Modifications

Having a robust density estimate, all tools for NEB are given. In this section,
we evaluate simple modifications to improve the performance or robustness of
the basic algorithm

6.1 Conventional Light Photons

While the basic algorithm is very strong in scenarios like the teapot in a stadium
(Figure 1), it fails when the caustic throwing object is much closer to the light
source than to the receiver. Consider the example of a light bulb – an emitter

12



Single NEE

` = 2 ` = 3 ` = 4 ` = 5 ` ∈ [2, 5]

29 spp,
RMSE 0.198

19 spp,
RMSE 0.201

16 spp,
RMSE 0.176

14 spp,
RMSE 0.152

14 spp,
RMSE 0.457

Merged NEE

16 spp,
RMSE 0.104

11 spp,
RMSE 0.178

12 spp,
RMSE 0.141

12 spp,
RMSE 0.113

5 spp,
RMSE 0.455

Figure 7: Equal time comparison (1 min) of Path Tracing with and without
NEE recycling.

inside a glass ball. Only NEEs on the surface of the bulb produce contributing
photons, but only very few paths randomly hit the comparable small bulb. All
other vertices in the scenes have no NEE contribution, because the glass ball
is blocking the connection to the light source. Therefore, the number of useful
NEEs and photons are both very small, leading to high variance results.

We observed that the failure cases of NEB occur in situations where the
conventional photon tracing, which starts at light sources, is strong. Hence,
combining NEE photons and light photons by the means of MIS promises a
more robust algorithm. In Figure 6 we demonstrate the effectiveness of this
combination. The renderer becomes much more effective with respect to time
although its iteration count decreases. The reason for both is that many more
photons are found and merged at each position. Besides the additional tracing
of photons, this requires more evaluations of the BSDF and the MIS weights.

6.2 NEE Recycling

Since we already store the NEE vertices in a search data structure, it seems
reasonable to share the results of NEE events. Therefore, it is necessary to
store the NEE information along with the vertices and to query those with a
neighborhood search. Then, all available NEEs at one vertex must be averaged
and the effective count of NEEs nE in Equation (10) increases to the number
of found events.
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In Figure 7 we show an experiment with and without NEE reuse to judge the
effectiveness of the proposed modification. Enabling the merges is clearly slower
due to the range query and the additional evaluations of BSDFs. For the range
queries we used a hash grid with a fixed query radius. Despite the lower number
of samples, the noise level (Root Mean Squared Error) is slightly better when
reusing the NEEs. However, the effectiveness decreases with path length and
gets worse than usual PT for practical path lengths. Repeated experiments with
different merge radii had the same outcome. The reason for the low effectiveness
is that the noise in indirect lighting is dominated by the random walk and not
the NEE.

Concluding, the idea of reusing the NEE events sounds promising, but does
not pay off in this form. Therefore, we used only the one primary NEE without
this modification all other experiments.

7 Comparison to Other Methods

The next event backtracking operator has clear strengths and weaknesses. It is
strong whenever NEE is more likely than other events on the path. This is the
case for small or distant light sources like in Figure 1. Additionally, it scales well
with many lights, if contribution-sensitive NEEs are used. It is weak, whenever
the vertex density is much smaller than the light contribution. In this situation,
combining NEB with light photons (+LP) can alleviate this problem.

In Figure 8 we show an equal time comparison of the NEB method to other
rendering algorithms in selected light situations. For the first two scenarios
our method is superior due to the uniform sampling density of NEE vertices
on the glass surfaces. The Mirrors scenario shows a small degeneration in
quality where the distance to the caustic receiving surface increases (mirrors at
the top). The Reflector scenario represents the worst case. Here, the tiny,
bright surfaces close to the point light source are seldom found by a Path Tracer.

In Figure 9 more realistic scenes are compared. For situations like in the
Watch scene, NEB is superior to the state of the art VCM. In other situations
(Bathroom or Christmas scene) it shows more noise than VCM without
modifications. Enabling the additional tracing of light photons makes NEB
equally effective as VCM. In all our experiments we found that NEB+LP is
very strong for caustics and SDS paths regardless of the scene scale. For diffuse
indirect lighting it performs on a comparable level to most other methods.

Comparing NEB as a method to produce high quality photons maps against
the older methods [PP98,SW00,KW00], it produces a medium quality map. In
most scenes, it performs similarly to the other methods without wasting sam-
ples for the estimation of importance distributions. However, if there are small
reflectors close to the light source (light bulb or Figure 8) it will be less ef-
fective, because it does not respect the radiance distribution. Adding standard
photons compensates this weakness, but their distribution does not follow im-
portance again. However, since none of the photons is ever stored, the memory
consumption of additional photons is of no interest.

14



Caustics SDS Mirrors Reflector
R

ef
er

en
ce

N
E

B
P

T
B

P
T

B
P

M
V

C
M

Figure 8: Equal time comparison (1 min) of different rendering algorithms in
difficult light scenarios.
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Figure 9: Comparison of NEB to VCM in more realistic scenes.
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Reference (VCM 18000 spp) NEB 18000 spp

(Ref. - VCM) ×100, false color

Figure 10: Bias visualization. The scene shows multiple indirect lighting,
caustics and SDS paths. The bottom left image is the blurred difference image:
reference minus NEB times 100 in false colors. Regions with a wobbly pattern
are unbiased, whereas most parts are systematically larger in the NEB rendering
(blue regions). Only in a few regions the bias is visible directly (closeups).

7.1 Bias

In Figure 10 we show a scene with many separated lighting situation to demon-
strate the relatively small bias which is introduced by the density estimates.
While there is a measurable bias, it is barely visible. Even in the most sever
cases, a good display device is necessary to see that NEB is slightly brighter
in some regions (closeups). The worst error which we observed happens if the
planarity assumption does not hold. In Figure 8, Mirrors one such artifact
can be found on the edge of the top most caustic. A possible solution would
be to additionally split the octree dependent on a local curvature criterion, to
ensure that the planarity assumption does not fail catastrophically.

8 Conclusions and Future Work

We proposed a new light transport operator – the next event backtracking –
which is strong in situations where the usual photon transport fails. It can
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successfully render caustics of small objects in large scenes due to an implicit
guidance of light paths toward the important regions and is often very strong
for SDS paths.

The most difficult problem is a robust and fast density estimate to convert
irradiance into flux at the selected positions. We introduced an octree-based
data structure which is fast, but may cause small artifacts from its grid structure
leading to overly bright photons.

Our NEB algorithm used the operator in the setup of a conventional Path
Tracer. In this configuration, certain light situations can still cause high vari-
ance. The modification to add conventional photon tracing, beginning at the
light source, solves this problem. Effectively, NEB is weak if standard photon
tracing is strong and vice versa. Therefore, both together result in a very robust
algorithm. Only scenes with bad visibility between observer and light source
are still a problem.

One of the practical weaknesses is the memory consumption, which is slightly
higher than in other photon mapping-based approaches. The view path vertex
storage exchanges the one for photons and has a comparable size. Additionally,
there is the octree to store the density values with up to 50 MB and the storage
for emissive events with another 50 MB per one million paths.

Also, it would be interesting to implement the algorithm on a GPU. In con-
trast to BPT or VCM, the number of connections is only linear in path lengths.
This reduces divergence and per-path-time such that our method should scale
well on parallel hardware.

Another future avenue would be to use MCMC samplers for the view paths
or to use the NEB paths as seed paths for MCMC samplers. This would increase
the method’s robustness with respect to bad visibility of the light source due to
high occlusion.

Finally, our approach allows the use of arbitrarily sampled positions as pho-
ton emitters. It would be possible (but likely ineffective) to distribute emitters
equally on the surfaces – independent of camera and light sources. More in-
teresting would be to use Markov chains to sample the emitters on the surfa-
ces themselves. Similar to Lightweight Photonmapping [GPGSK18], it would
then be possible to remove emitters on surfaces where other samplers are more
successful and to increase the density otherwise.
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Figure 11: Intersection area from simplex volume. In 2D the simplex-volume
is the area of a triangle. Left: a single vertex of the box lies below the plane
(p,n). Right: sequence of events when moving the plane along n.

A Intersection Area between Plane and Box

We are sure that this formula is not new, but we were not able to find a cite-able
reference for Equation (12). We found the derivation on Mathoverflow (https:
//math.stackexchange.com/a/885662/661978) and repeat it here for completeness.

The basic idea is to compute the volume V inside the box and below the
plane with respect to the plane offset h = 〈n,p〉. Then the derivation of V
yields the searched area. As primary conditions we have ‖n‖ = 1 and that the
box is axis aligned. Let

∆(h,x) = {y ∈ Rd : ∀yi ≥ xi ∧ 〈n,y〉 ≤ h} (13)

be the d-dimensional simplex, which starts at x as depicted in Figure 11. The
volume of this simplex can be computed from a product of its (axis aligned)
edge lengths with

V (∆(h,x)) = V (∆(h− 〈n,x〉,0)) =
max(0, h− 〈n,x〉)d

d!
∏

i ni
. (14)

The clamping to zero is necessary if the entire box is on the upper side of the
plane.

Now, moving the plane along n, it will pass all vertices of the box in a sorted
order. This sequence is shown in Figure 11, too. After passing the second vertex,
the simplex from the first one will overestimate the volume. Here, the second
simplex starting at the second vertex must be subtracted. The same applies to
the third vertex. After the forth vertex, the subtracted areas from the second
and third vertex will overlap and the volume is underestimated. Thus, the
volume of the forth simplex must be added again. This alternating sign is
described by the parity ε as given in Equation (12).

Hence, the volume of the box B with respect to the plane is

V (B, h) =
1

d!
∏

i ni

2d−1∑
i=0

εi max(0, h− 〈n,bi〉)d. (15)
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Finally, the change of volume over h is dominated by the area of the infinitesimal
slab which gives the area

A(B, h) =
∂V (B, h)

∂h

=
1

(d− 1)!
∏

i ni

2d−1∑
i=0

εi max(0, h− 〈n,bi〉)(d−1). (16)

Equation (12) is then obtained by applying the above equation for one, two
and three dimensions. Each component of n which is zero means that the normal
is perpendicular to the respective edge of the box. Then, the size s of the box
must be multiplied with the area of the simplex from the reduced dimension.
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B Octree Implementation

To use the following C++ source codes you must provide some implementation
of a 3D vector with following operations:

• arithmetic (+, -, *, /)

• array access [0] to [2] for the three dimensions

• functions like dot(), abs(), len()

Helper function which implements Equation (12):

inline float sq(float x) { return x ∗ x; }

// Compute the area of the plane-box intersection
// https://math.stackexchange.com/questions/885546
// https://math.stackexchange.com/a/885662
// or appendix A
inline float intersection area(const vec3& bmin, const vec3& bmax,

const vec3& pos, const vec3& normal) {
vec3 cellSize = bmax - bmin;
vec3 absN = abs(normal);
// 1D cases
if(abs(absN[0] - 1.0f) < 1e-3f) return cellSize[1] ∗ cellSize[2];
if(abs(absN[1] - 1.0f) < 1e-3f) return cellSize[0] ∗ cellSize[2];
if(abs(absN[2] - 1.0f) < 1e-3f) return cellSize[0] ∗ cellSize[1];
// 2D cases
for(int d = 0; d < 3; ++d) if(absN[d] < 1e-4f) {
int x = (d + 1) % 3;
int y = (d + 2) % 3;
// Use the formula from stackexchange: phi(t) = max(0,t)ˆ2 / 2 m 1 m 2
// -> l(t) = sumˆ4 s max(0,t-dot(m,v)) / m 1 m 2
// -> A(t) = l(t) ∗ h 3
float t = normal[x] ∗ pos[x] + normal[y] ∗ pos[y];
float sum = 0.0f;
sum += max(0.0f, t - (normal[x] ∗ bmin[x] + normal[y] ∗ bmin[y]));
sum -= max(0.0f, t - (normal[x] ∗ bmin[x] + normal[y] ∗ bmax[y]));
sum -= max(0.0f, t - (normal[x] ∗ bmax[x] + normal[y] ∗ bmin[y]));
sum += max(0.0f, t - (normal[x] ∗ bmax[x] + normal[y] ∗ bmax[y]));
return cellSize[d] ∗ abs(sum / (normal[x] ∗ normal[y]));

}
// 3D cases
float t = dot(normal, pos);
float sum = 0.0f;
sum += sq(max(0.0f, t - dot(normal, bmin)));
sum -= sq(max(0.0f, t - dot(normal, vec3{bmin[0], bmin[1], bmax[2]})));
sum += sq(max(0.0f, t - dot(normal, vec3{bmin[0], bmax[1], bmax[2]})));
sum -= sq(max(0.0f, t - dot(normal, vec3{bmin[0], bmax[1], bmin[2]})));
sum += sq(max(0.0f, t - dot(normal, vec3{bmax[0], bmax[1], bmin[2]})));
sum -= sq(max(0.0f, t - dot(normal, vec3{bmax[0], bmin[1], bmin[2]})));
sum += sq(max(0.0f, t - dot(normal, vec3{bmax[0], bmin[1], bmax[2]})));
sum -= sq(max(0.0f, t - dot(normal, bmax)));
return abs(sum / (2.0f ∗ normal[0] ∗ normal[1] ∗ normal[2]));

}

Helper to track the depth of the tree:

template<typename T>
inline void atomic max(std::atomic<T>& a, T b) {
T oldV = a.load();
while(oldV < b && !a.compare exchange weak(oldV, b)) ;

}
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// A sparse octree with atomic insertion to measure the density of elements
// in 3D space.
class DensityOctree {
static constexpr int SPLIT FACTOR = 4;
// At some time the counting should stop -- otherwise the counter will
// overflow inevitable.
static constexpr int FILL ITERATIONS = 1000;

public:
void set iteration(int iter) {
int iterClamp = min(FILL ITERATIONS, iter);
m stopFilling = iter > FILL ITERATIONS;
m densityScale = 1.0f / iterClamp;
m splitCountDensity = SPLIT FACTOR ∗ iterClamp;
// Set the counter of all unused cells to the number of expected samples
// divided by 4. A planar surface will never extend to all eight cells.
// It might intersect 7 of them, but still the distribution is on a
// surface. Therefore, the SPLIT FACTOR many particles are distribute
// among 4 cells. This gives a much better value than dividing the
// factor by 8.
if(!m stopFilling)
for(int i = m allocationCounter.load(); i < m capacity; ++i)

m nodes[i].store(ceil(SPLIT FACTOR / 4.0f ∗ iter));
}

void initialize(const vec3& sceneMin, const vec3& sceneMax, int capacity) {
// Slightly enlarge the volume to avoid numerical issues on the boundary
vec3 sceneSize = (sceneMax - sceneMin) ∗ 1.002f;
m sceneSizeInv = 1.0f / sceneSize;
m sceneScale = len(sceneSize);
m minBound = sceneMin - sceneSize ∗ (0.001f / 1.002f);
// Round up to 8n+1 - otherwise we cannot use the last [1,7] entries.
m capacity = 1 + ((capacity + 7) & (˜7));
m nodes = std::make unique<std::atomic int32 t[]>(m capacity);;
// Allocate the root node with a count of 0
m allocationCounter.store(1);
m nodes[0].store(0);
m depth.store(0);

}

// Overwrite all counters with 0, but keep allocation and child pointers.
void clear counters() {
int n = m allocationCounter.load();
for(int i = 0; i < n; ++i)
if(m nodes[i].load() > 0)

m nodes[i].store(0);
}

void increment(const vec3& pos) {
if(m stopFilling) return;
vec3 normPos = (pos - m minBound) ∗ m sceneSizeInv;
int countOrChild = increment if positive(0);
countOrChild = split node if necessary(0, countOrChild, 0);
int edgeL = 1;
int currentDepth = 0;
while(countOrChild < 0) {
edgeL ∗= 2;
++currentDepth;
// Get the relative index of the child [0,7]
ivec3 intPos = (ivec3{ normPos ∗ edgeL }) & 1;
int idx = intPos[0] + 2 ∗ (intPos[1] + 2 ∗ intPos[2]);
idx -= countOrChild; // ’Add’ global offset (which is stored negative)
countOrChild = increment if positive(idx);
countOrChild = split node if necessary(idx, countOrChild, currentDepth);

}
}
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float get density(const vec3& pos, const vec3& normal, float∗ size = 0) {
vec3 offPos = pos - m minBound;
vec3 normPos = offPos ∗ m sceneSizeInv;
// Get the integer position on the finest level.
int gridRes = 1 << m depth.load();
ivec3 iPos { normPos ∗ gridRes };
// Get root value. This will most certainly be a child pointer...
int countOrChild = m nodes[0].load();
// The most significant bit in iPos distinguishes the children of the
// root node. For each level, the next bit will be the relevant one.
int currentLvlMask = gridRes;
while(countOrChild < 0) {
currentLvlMask >>= 1;
// Get the relative index of the child [0,7]
int idx = ((iPos[0] & currentLvlMask) ? 1 : 0)

+ ((iPos[1] & currentLvlMask) ? 2 : 0)
+ ((iPos[2] & currentLvlMask) ? 4 : 0);

// ’Add’ global offset (which is stored negative)
idx -= countOrChild;
countOrChild = m nodes[idx].load();

}
if(countOrChild > 0) {
// Get the world space cell boundaries
int currentGridRes = gridRes / currentLvlMask;
ivec3 cellPos = iPos / currentLvlMask;
vec3 cellSize = 1.0f / (currentGridRes ∗ m sceneSizeInv);
vec3 cellMin = cellPos ∗ cellSize;
vec3 cellMax = cellMin + cellSize;
float area = intersection area(cellMin, cellMax, offPos, normal);
// Sometimes the above method returns zero. Therefore, we restrict the
// area to something larger than 1/100 of an approximate cell area.
float cellDiag = m sceneScale / currentGridRes;
float minArea = cellDiag ∗ cellDiag;
if(size) { ∗size = cellDiag; minArea ∗= 0.1f; }
else minArea ∗= 0.01f;
return m densityScale ∗ countOrChild / max(minArea, area);

}
return 0.0f;

}

// The robust version additional samples four neighbors in the tangent
// plane and returns the median of those results. This removes noise and
// therefore outliers in the rendering.
float get density robust(const vec3& pos, const scene::TangentSpace& ts) {
float d[5];
float cellDiag = 1e-3f;
int count = 0;
d[0] = get density(pos, ts.geoN, &cellDiag);
cellDiag ∗= 1.1f;
if(d[0] > 0.0f) ++count;
d[count] = get density(pos + ts.shadingTX ∗ cellDiag, ts.geoN);
if(d[count] > 0.0f) ++count;
d[count] = get density(pos - ts.shadingTX ∗ cellDiag, ts.geoN);
if(d[count] > 0.0f) ++count;
d[count] = get density(pos + ts.shadingTY ∗ cellDiag, ts.geoN);
if(d[count] > 0.0f) ++count;
d[count] = get density(pos - ts.shadingTY ∗ cellDiag, ts.geoN);
if(d[count] > 0.0f) ++count;
// Find the median via selection sort up to the element m.
// Prefer the greater element, because overestimations do not
// cause such visible artifacts.
int m = count / 2;
for(int i = 0; i <= m; ++i) for(int j = i+1; j < count; ++j)
if(d[j] < d[i])
std::swap(d[i], d[j]);

return d[m];
}

int capacity() const { return m capacity; }
int size() const { return min(m capacity, m allocationCounter.load()); }
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private:
// Nodes consist of 8 atomic counters OR child indices. Each number is
// either a counter (positive) or a negated child index.
std::unique ptr<std::atomic int32 t[]> m nodes;
std::atomic int32 t m allocationCounter;
std::atomic int32 t m depth;
vec3 m minBound;
vec3 m sceneSizeInv;
float m sceneScale;
float m densityScale; // 1/#iterations to normalize the counters
int m capacity;
int m splitCountDensity; // The number when a node is split must be a

// multiple of 8 and must grow proportional
// to #iterations

bool m stopFilling;

// Returns the new value
int increment if positive(int idx) {
int oldV = m nodes[idx].load();
int newV;
do {
if(oldV < 0) return oldV; // Do nothing, the value is a child pointer
newV = oldV + 1; // Increment
// Write if nobody changed the value in between

} while(!m nodes[idx].compare exchange weak(oldV, newV));
return newV;

}

// Returns the next child pointer or 0
int split node if necessary(int idx, int count, int currentDepth) {
// The node must be split if its density gets too high
if(count >= m splitCountDensity) {
// Only one thread is responsible to do the allocation
if(count == m splitCountDensity) {
int child = m allocationCounter.fetch add(8);
if(child >= m capacity) { // Allocation overflow

// Avoid overflow of the counter (but keep a large number)
m allocationCounter.store(int(m capacity + 1));
return 0;

}
// We do not know anything about the distribution of photons
// -> equally distribute. Therefore, all eight children are
// initilized with SPLIT FACTOR on set iteration().
m nodes[idx].store(-child);
// Update depth
atomic max(m depth, currentDepth+1);
// The current photon is already counted before the split
// -> return stop
return 0;

} else {
// Spin-lock until the responsible thread has set the child pointer
int child = m nodes[idx].load();
while(child > 0) {
// Check for allocation overflow
if(m allocationCounter.load() > m capacity)
return 0;

child = m nodes[idx].load();
}
return child;

}
}
return count; // count is already a child

}
};
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