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Figure 1: We propose two new methods, LOBVH and LLBVH, based on inserting an object into a loose octree. For scenarios with high
occlusion this results in a faster build+trace time (right) than previous methods.

Abstract
Many fast methods for constructing BVHs on the GPU only use the centroids of primitive bounding boxes and ignore the actual
spatial extent of each primitive. We present a fast new way and a memory-efficient implementation to build a BVH from a
loose octree for real-time ray tracing on fully dynamic scenes. Our memory-efficient implementation is an in-place method and
generalizes the state-of-the-art parallel construction for LBVH to build the BVH from nodes of different levels.

1. Introduction

With increasing hardware capabilities ray-tracing becomes more
and more attractive for different simulation and visualization pur-
poses. One of the key points for a fast ray-tracing engine is the
acceleration data structure which is used to find ray-intersections.
Bounding Volume Hierarchies (BVH) are among the most effective
ones when used on a GPU [VHB14]. They use a hierarchy of sim-
ple primitives, e.g. axis aligned bounding boxes, to exclude large
parts of a scene in a ray intersection test.

Usually, the build time for those structures is considerably high
and increases with the target quality. Therefore, acceleration struc-
tures are only built once (preprocessing) and used multiple times.
However, highly dynamic scenes need to rebuild the acceleration
structure more frequently, especially for simulations in which many
moving objects may invalidate the entire topology in each itera-
tion. Thus, a static structure will degenerate and lose its accelera-
tion properties after a short period of time.

An example, for which we try to solve the problem, is the sim-
ulation of heterogeneous particle mixtures like concrete. Often
such simulations are done with periodic boundaries, causing large
changes in the BVH when objects wrap around.

We propose two fast BVH build methods which are based on

a loose octree. A loose octree is an octree where each node has
an enlarged boundary [Ulr00]. This leads to an overlap of nodes,
like in a BVH, but has the advantage of a deterministic indexing
scheme. This allows to add geometry very fast, but shows a bad
tracing performance if used as octree directly. We propose two dif-
ferent build algorithms to produce a higher quality BVH from an
initial loose octree. Our first method (Loose Octree Bounding Vol-
ume Hierarchies (LOBVH)) starts with a dense octree where all
octree nodes are allocated within memory and results in an 8-ary
tree. This process leads to the best results for our application of
particle mixtures with completely dynamic geometry. However, it
requires huge amounts of temporary memory for deeper hierarchies
and performs bad on triangle scenes. We then develop a memory
efficient algorithm (Loose Octree Linear Bounding Volume Hier-
archies (LLBVH)) which is based on the same initial positioning
of primitives regarding the loose octree. It can be seen as a gen-
eralization of Linear Bounding Volume Hierarchies (LBVH) from
Karras [Kar12], where we allow storing geometry on each level.

Finally, we compare our methods to the LBVH from Karras
[Kar12] with respect to simulation output (spherical primitives) and
triangle scenes. For our application the LOBVH shows the shortest
iteration times, where one iteration consists of building the Bound-
ing Volume Hierarchies (BVH) and tracing. In a parallel CUDA im-
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plementation we achieve a full rebuild of the hierarchy in 4.5ms for
1 million primitives on a GTX 1080. For triangle scenes LOBVH
is much slower in most cases. With LLBVH we achieve a similar
tracing performance as LBVH [Kar12], but have a slightly higher
construction time with the exception of a few scenes.

2. Related Work

In the acceleration of ray-tracing operations, many kinds of search
data structures are used. The most used ones are kD-trees [Kap85]
and BVHs. On GPU a BVH is typically faster (especially for pri-
mary rays), has lower memory footprint, as shown by Vinkler et al.
[VHB14], and works well with packet tracing techniques [WK07].

The core of each BVH is the Surface Area Heuristic (SAH)
which was first described by Goldsmith and Salomon [GS87] and
formalized later by MacDonald et al. [MB90]. It measures the ex-
pected intersection cost for an object hierarchy and thus defines a
target function to optimize a BVH.

One of the best building algorithms is the Split Bounding Vol-
ume Hierarchies (SBVH) [SFD09] which splits references to large
triangles. This overcomes an issue where the quality of the hierar-
chy decreases due to triangles which are far larger than most others.
Its build time spans several seconds, which makes it a good choice
for static scenes.

Another group of algorithms targets the fast parallel construc-
tion of the hierarchy. Lauterbach et al. [LGS∗09] introduced the
LBVH. It starts by sorting the centroids of the geometry along a
space-filling Morton-curve, followed by a hierarchical clustering
process. For the hierarchy construction they proposed to split ei-
ther by using the bits from the Morton-code, or by applying an
SAH build strategy. This already parallel build method was further
improved by Karras [Kar12] by constructing the entire hierarchy
in a single pass – instead per level. Apetrei [Ape14] also improved
LBVH by performing both the tree construction and the bounding
box calculation in a single bottom- up traversal.

A different modification, called Hierarchical Linear Bounding
Volume Hierarchies (HLBVH), also optimized multiple levels at
the same time by building parts of the hierarchy using the LBVH-
middle-split approach and applying an SAH construction on top
of the clusters [PL10]. Garanzha et al. [GPM11] improved the
HLBVH algorithm build time and reduced its memory consump-
tion. In a similar fashion Treelet Bounding Volume Hierarchies
(TRBVH) [KA13] optimizes parts of the tree (the treelets) with
respect to SAH as a post-process. The idea was then adopted and
improved by Domingues and Pedrini [DP15] using bottom-up ag-
glomerative clustering inside the treelets instead of the full search
for an optimal solution. All above methods are Morton-order based
and can be further improved by extended Morton codes introduced
by [VBH17], which increases the coherency for BVHs by encod-
ing the size of objects with one bit in every 4 or 7 bits and using
adaptive axis order and count until the subdivided volume becomes
close to a cube. The enhancement in [VBH17] by using adap-
tive axis order and count requires precomputed global axis-aligned
bounding box (AABB), which restrains its applications in fully dy-
namic scenes. Our methods inherently implies encoding size infor-
mation every 3 bits in Morton code, which does not consume extra

(a) Regular
quadtree

(b) Enlarged bounds
shown for level 1

(c) Possible placement
on level 2

Figure 2: Example of a loose quadtree with a = 2 compared to a
regular quadtree. The sphere would be added to the root in (a) and
to the green node in (b) and (c). While the computed level for the
sphere is 1 (b) it would also fit into a level 2 node as shown in (c).

bits in 32/64 bits Morton code. With a few extra lines of code in the
initialization, our LLBVH algorithm can also encode the size in-
formation every two levels (6 bits) up to a specific level. However,
this did not improve the total build + trace time and the memory
footprint for our test scenes on average.

In comparison to the above implementations our first algorithm
has two major differences: First, we add data to different levels of
the initial tree, instead of inserting to the leaf level only. Second,
our final tree is still an octree instead of a binary tree, flattening
the hierarchy. We show that for certain applications this results in
a better total iteration time than the aforementioned methods. Our
second algorithm keeps the order formed by the loose octree and
reduces the memory footprint.

A different category for fast-to-build acceleration structures is
based on grids. Kalojanov and Slusallek [KS09] filled a uniform
grid with a parallel algorithm leading to a very fast construction.
On the other hand, uniform grids require a lot of space and are of-
ten slower than HLBVHs [KS09]. Irregular grids [PGKS17] solve
both problems and even outperform SBVH with respect to tracing
performance. However, their construction algorithm is still slower
than the LBVH derivatives and has a slower total iteration time.

3. Building BVHs with a Loose Octree

Our algorithms are based on the concept of loose octrees which is
introduced in this section, first. Then, we go into the details of our
build algorithm and show how to implement it in parallel.

3.1. The Loose Octree

In a D-dimensional octree each node is a box which contains 2D

equally sized children – one split in each dimension. The 2D variant
is also known as a quadtree (shown in Figure 2 left). In a dense
octree, having the same tree depth in any branch, a point can be
localized distinctly in a single cell and for that cell the index can be
computed in a closed form.

However, inserting a shape like a sphere or a triangle, leads to
an ambiguity. On a fine level it may overlap multiple nodes. Alter-
natively, the shape could be added on a coarse level where it does
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not overlap any edge. With this strategy, a very small shape might
be added to the root node because it overlaps an edge in its center,
leading to bad acceleration properties.

a · s0/2l

s0/2l

dmax/2
s0(a−1)/2l+1A loose octree scales the bounding box of

each node by a factor of a. If the edge length of
the root node on level l = 0 is s0 then a · s0/2l

is the edge length of the enlarged bounding vol-
umes for all nodes at level l.

For a loose octree it is possible to define
an insertion position for a primitive o which is only based on its
AABB. An AABB whose centroid is within a cell of the octree
cannot leave the cell’s boundary, if dmax ≤ s0 · (a− 1)/2l , where
dmax is the AABB’s longest side. Thus, given the size measure d
for a primitive, its level can be computed as

l(d) =
⌊

log2
s0 · (a−1)

d

⌋
. (1)

With d = dmax it is possible that the primitive also fits into one
of the extended child nodes (see Figure 2 (c)). However, with a≥ 2
it is never possible to have a deviation of more than one level using
Eq. (1). To find the smallest possible cell for insertion, it is only
necessary to test if the primitive fits into the cell at level l(d)+ 1.
For level l(d) we have a guarantee that the primitive fits without
further testing.

While using the largest side of the AABB, d = dmax, gives a
guarantee that the primitive fits into the node, we used its minimum
side dmin instead. This moves triangles further down in the hierar-
chy and provides better tracing performance. We have also tried
to use the average side length and the cubic root of the AABB’s
volume as the value of d for triangles, which all provide inferior
performance. For spheres d is simply their diameter.

3.2. Dense Build Algorithm (LOBVH)

In this section, we describe how to build a BVH from a densly
stored loose octree with maximum depth L from a given set of prim-
itives.

The octree data structure consists of four arrays to depict the
properties of each node: one for the bounding box, one for the first-
child pointer, one for the next pointer and one for the pair of pointers
to the first and last primitive of the current node.

The algorithm steps are:

Initialization For each primitive its level and its Morton code are
computed and all elements are sorted according to that code.

Pointer Setup References of a densely stored octree to the data
are established (visualized in Figure 3 (a)).

BVH Pointer Setup The pointer arrays first-child and next are
filled (Figure 3 (b)).

Compaction All vacant nodes are removed (Figure 3 (c)).

3.2.1. Initialization

First of all, levels for each primitive are calculated with equation
(1). The corresponding key k for a primitive i in level l is then
computed as

ki = ∆(l)+m(ci, l) (2)

where ci is the centroid of the AABB, m(ci, l) is the Morton code
of ci with l bits used for each dimension and ∆(l) defined as

∆(l) =
8l−1

7
counts the number of octree nodes from level 0 to level l− 1. The
key ki specifies the octree node that owns primitive i. We use k
to denote indices of nodes itself. Also, we set m(k) = m(ci, l) as
abbreviation for the node’s Morton code.

Using Eq. (2) we can sort all N primitives. After that, all primi-
tives which fall into the same node are adjacent to each other.

3.2.2. Pointer Setup

In this step, the first and the last primitive for each non-empty octree
node will be initialized in an array of size ∆(L+1). By comparing
each pair of adjacent keys, the first and the last element of a node
can be identified.

Whenever the key between two primitives i and i+ 1 changes,
the last-pointer E(ki) points to i and the first-pointer S(ki+1) points
to i+1 respectively.

3.2.3. BVH Pointer Setup

Denote the first-child pointer of node k on level l as F(k) and its
next pointer as N(k). N(k) points to the next node of k in a breadth-
first search (BFS) of the octree, thus N(k) = k + 1 if k is not the
last node among its siblings ((m(k)&7) = 7) , otherwise we repeat
m(k) = m(k)� 3 until (m(k)&7) 6= 7. The value of F(k) can be
simply initialized as

F(k) = ∆(l +1)+(m(k)� 3).

3.2.4. Compaction

For compaction we need the following steps:

1. Adjust F(k).
Since usually many of the octree nodes are empty, the first-child
pointer of node k should be adjusted so that F(k) points to the
first non-vacant of this child-nodes. Here we define a node as va-
cant if it has no primitive and all of its descendants are empty.
Thus we can mark all vacant nodes with a bottom-up approach
and adjust F(k) for non-vacant nodes so that it points to the first
non-vacant child of the current node, if such a node exists. Due
to this bottom-up nature, the bounding box for each node is cal-
culated at this phase.

2. Adjust N(k).
After marking all vacant nodes, N(k) can be adjusted as repeat-
ing N(k) = N(N(k)) as long as node N(k) is vacant.

3. Compaction.
To improve the data locality for better ray tracing performance,
all vacant octree nodes should be omitted through a scan opera-
tion, since they are all marked in the preceding step.

It may appear that the pointer setup could be solved on the prim-
itive data array only, using binary searches. This is not the case,
because the internal nodes without geometry would be missed by
this process. The blue boxes in Figure 3 (c) would be missing if not
using the full process. The important difference is that an empty
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Figure 3: LOBVH: The upper row shows the tree structure after insertion into loose quadtree (a), after explicit pointer setup (b) and
after compaction (c). Below, the scene and the geometrical structure of the respective trees are shown. The spheres overlap the associated
(quadtree) nodes’ boundaries due to the loose property (center). After compaction we have a BVH with tightly fitting bounding boxes (right).

node is not vacant if any of its descendants is non-empty. Artifi-
cially inserting the missing internal nodes can be implemented, but
results in a slow multi-pass solution. The pointer setup for stackless
traversal of the BVH is now completed.

3.2.5. Parallel Realization of the Algorithm

The process described so far can easily be parallelized. In the steps
from Section 3.2.1 and 3.2.2 each of the N primitives is associ-
ated with one thread. For the steps in Section 3.2.3 and 3.2.4, each
node is assigned to a thread. Note that the adjustment for N(k) does
not need to be changed for parallelization, since the side-effects of
other threads adjusting their N(k) only accelerate the whole adjust-
ment process. For scan and radix sort processes, we apply the CUB
library 1.8.0 [Nvi18].

3.3. Memory Efficient Implementation (LLBVH)

The approach in the last section requires temporary memory pro-
portional to the total number of nodes of an octree with maximum
depth L, which is ∆(L+ 1). For example with L = 10 (30 bits for
the lowest level), ∆(L + 1) ≈ 1.227× 109. Such a huge memory
requirement also increases the build time for large L. Thus in this
section, we present a memory efficient implementation to build a
specific BVH based on the octree.

3.3.1. From Loose Octree to Binary Tree

To maximize the parallelism for constructing the ray tracing accel-
eration structure, we first transform the loose octree into a binary
tree. This process is straightforward because each octree node with
level l matches a binary tree node with level 3l and between each
adjacent levels in the octree, two extra levels are inserted to ensure
that each internal node has two children, as shown in Figure 4 (b).

Denoting L′ as the maximum depth of the normal binary tree, we
have L′ = 3L.

3.3.2. Extending the Binary Tree

As shown in Figure 4, the normal binary tree built from the oc-
tree can have internal nodes containing their own primitives. Such
a structure has two disadvantages for constructing an accelerating
structure based on a loose octree:

1. To minimize the memory requirement, it is important to know
the number of non-vacant nodes a priori. However, it is not easy
to get such a number quickly for real time applications. Besides,
even knowing this number, after removing all vacant nodes, re-
dundant nodes such as a chain of non-vacant empty nodes still
need to be considered, if we want to minimize the memory re-
quirement.

2. Since each node has only one bounding box, as long as a ray-
bounding box test succeeds, all primitives (if they exist) of an
internal node need to be tested for possible intersections, even if
it turns out that the ray only intersects with the primitives from
its descendant nodes.

Therefore, we transform the current binary tree to an extended bi-
nary tree by inserting two empty nodes for each non-empty inter-
nal node in the original binary tree: the original node holds its own
primitives as a leaf node with a separate AABB and one empty
node holds its descendant nodes as its sibling, as shown in Figure 4
(c). Now, all non-empty nodes of the original octree/binary tree are
leaf nodes and the number of required internal nodes is the number
of all leaf nodes minus one. Besides, all primitives belonging to an
internal node have their own bounding box and we are free to de-
cide whether to test the descendant nodes or the primitives of the
new leaf node first.
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Figure 4: LLBVH: (a) shows the octree, (b) the implicit binary tree and (c) the extended binary tree in which internal nodes with data are
split into one data and two internal nodes. Note that in (c), the two empty leaf nodes 7 and 8 are omitted.

3.3.3. Building the Extended Binary Tree in Parallel

Basically, we use the build method of Karras [Kar12], but need to
do some modifications such that the algorithm works with primi-
tives in internal nodes. First, we introduce Karras’ method before
explaining the necessary modifications.

Suppose we have n nodes and each has its unique Morton code.
Then the common prefix is used to group the nodes. After sorting
all nodes based on their Morton codes in ascending order, we can
construct n− 1 internal nodes to build the binary tree with each
internal node covering a range of nodes in [0,n− 1] by utilizing
the following fact. For simplicity, we will use Ii to refer to inter-
nal nodes explicitly and Ei for explicitly denoting leave nodes. For
arbitrary nodes we keep using its index i only.

Let δ(i, j)† denote the length of the common prefix between the
Morton codes mi and m j, and [a,b] is an arbitrary interval of Mor-
ton codes. Then all nodes in a sorted range [a,b] share a common
prefix δ(a,b) corresponding to the common ancestor node. There-
fore, δ(a′,b′) ≥ δ(a,b) holds for any a′,b′ ∈ [a,b]. In each in-
ternal node the children are partitioned by the first differing bit,
i.e. the bit following after the prefix δ(a,b). The split position
γ ∈ [a,b− 1] satisfies δ(γ,γ+ 1) = δ(a,b). This also implies that
δ(γ,γ−1)> δ(a,b) if γ−1 ∈ [a,b] and δ(γ+1,γ+2)> δ(a,b), if
γ+2 ∈ [a,b]. Thus, the left child of I[a,b] covers [a,γ] and the right
child covers [γ+1,b].

Therefore, for each i ∈ [0,n− 2], if δ(i, i+ 1) < δ(i, i− 1), we
take i = γ and search on the left side of i for the other end a of I[a,b].
Similarly, if δ(i, i+1)> δ(i, i−1), we take i = γ+1 and search for
b on the right side. The search direction can be encoded as d =−1
for the left, d = 1 for the right direction and is calculated with

d = sign(δ(i, i+1)−δ(i, i−1)). (3)

It will not happen that d = 0 due to the unique Morton code re-
quirement.

Take the search for a as example, we must have δ(i,a)> δ(i, i+

† δ(i, j) can be efficiently computed by counting the leading zeros of
mi ⊕ m j using the CUDA __clz() intrinsic.

1) since I[a,i] is covered by I[a,b] and δ(i,a− 1) ≤ δ(i, i+ 1), oth-
erwise [a− 1,b] shall be covered by I[a,b]. With the help of this
constraint, we can use a binary search to find a or b. Once we have
[a, i] or [i,b], we can use another binary search to find the current
node’s split position. Note that with this approach, we cannot find
an internal node twice, since only one side of each range is used as
split position for its parent, and we have n− 1 nodes in [0,n− 2]
and the number of internal nodes is also n−1 —- all internal nodes
will be found.

Now, let us extend this concept for nodes from different levels.
To simplify the comparison of nodes, we use the common prefix
based on adjusted Morton codes m′(i) = m(i)� (L′− li), i.e. the
original Morton codes with 0s appended, so that all Morton codes
from different levels start from the same bit. For each adjusted
Morton code of level l, only the first l bits are valid, which im-
plies that the common prefix η(i, j) of nodes i, j should not be
larger than min{li, l j}. Hence, it can be computed by η(i, j) =
min{li, l j,δ(i, j)}.

Initialization

We start with the computation of the level, the adjusted Morton
code and the depth-first search (DFS) key kDFS for each primitive in
parallel. The DFS key identifies the order of the primitive’s nodes
when performing a DFS from the root of the normal binary tree.
For a primitive from node i of level l in the normal binary tree, its
DFS key can be calculated as

kDFS, i = 2m′(i)−popc(m′(i))− l (4)

where popc(m′(i)) counts the number of 1-bits in m′(i). ‡ For the
derivation of equation (4), see the supplement.

The resulting arrays for the level and the adjusted Morton code
are sorted with respect to kDFS. After the sorting, all m′s are in
ascending order, too. Since all primitives which fall into the same
node have the same Morton codes, they will be adjacent after sort-
ing. With adjusted Morton codes it is possible that a parent and a

‡ CUDA provides the functionality with the __popc() compiler intrinsic.
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child share the same code. Only by sorting with respect to kDFS the
correct order between parents and children can be guaranteed.

For the new array, we can apply a compaction, removing redun-
dant entries with equal kDFS. The final array contains m′ and l for
all non-empty nodes in the normal binary tree, which are equivalent
to the leaf nodes in the extended binary tree.

Construction

The construction algorithm summarized in Algorithm 1 takes the
new array from the initialization as input. Since we used the DFS
order in the sorting process we can simplify the computation of
the common prefix to θ(i, j) = min{l j,δ(i, j)} instead of η(i, j) as
shown in the supplement.

Algorithm 1: Construction of a LLBVH binary tree. We
define θ(i, j) =−1 if j < 0 and θ(i, j) =−2 if j > n−1,
for simplicity. See section 3.3.3 for details.

1 for each internal node i ∈ [0,n−2] in parallel do
// Determine direction of the range

2 d←

{
+1 θ(i, i+1)≥ θ(i, i−1)
−1 otherwise

// Compute upper bound for the length of the range
3 θmin← θ(i, i−d)−max(d,0)
4 σmax← 2
5 while θ(i, i+σmax ·d)> θmin do
6 σmax← σmax ·2

// Find the other end using binary search
7 σ← 0
8 for t← σmax/2,σmax/4, ...,1 do
9 if θ(i, i+(σ+ t) ·d)> θmin then

10 σ← σ+ t
11 j← i+σ ·d

// Find the split position using binary search
12 θnode← θ(i, j)
13 if lmin(i, j) = θnode then
14 γ←min(i, j)
15 else
16 s← 0
17 for t← dl/2e,dl/4e, ...,1 do
18 if θ(i, i+(s+ t) ·d)> θnode then
19 s← s+ t ;
20 γ← i+ s ·d +min(d,0)

// Output child pointers
21 left ← if min(i, j) = γ then Eγ else Iγ

22 right← if max(i, j) = γ+1 then Eγ+1 else Iγ+1
23 Output:
24 Ii← (left,right)

As stated before, we insert two empty internal nodes if one non-
empty node a has descendants. One is the former internal node with
all descendants of a and one holds a as left leaf child and the first
as right child. Let a = min{i, j} and b = max{i, j}. Each time the
range [a,b] is found, we check if a is the ancestor for all nodes in
[a+1,b], i.e. level la of node a is equal to θ(a,b) (line 13), and set
the split position to a. If the level is not equal to the prefix length,
we search the split position γ ∈ [a,b] as described before (lines 16–
20). In figure 4 only node 0 fulfills the equality (leaf nodes on a

higher level). The handling in line 14 and lines 21–22 then produces
the extended tree node, shown as root in Figure 4 (c).

Now the task for a+ 1 (processed by another thread) is first to
find the other end b and then its own split position, which requires
d = 1. This can be calculated with equation (3) except that if a+1
has no descendants itself, d will become zero in which case we
define d as one as required (line 2). The case where a is an internal
non-empty node and a+ 1 has no descendants is the only case for
which d becomes zero.

Another problem to address here, is that a+ 1 needs to find the
position of the last descendant of a, which is b. This cannot be
simply done by requiring θ(a + 1,b) > θmin as in line 5 or line
9, since θmin = θ(a+ 1,a) and if b is not a descendant of a+ 1,
we have θ(a+ 1,b) = θmin. A solution is to change the condition
from if(θ(a+1,b)> θmin) to if[(θ(a+1,b)> θmin) or (d = 1 and
θ(a+1,b) = θmin)] so that b can be found by a+1 as the other end
of its range. However, this imposes an extra comparison for each
iteration. Therefore, we adjust the value of θmin in line 3 for d = 1,
instead. Note that this change will not affect other nodes to find
their ends since θ(i, i− 1) = θ(i, j) with j > i only happens when
i, j are descendants of i− 1 but j is not the descendant of i, which
is exactly the case we discussed here. A proof can be found in the
supplement.

After the BVH based on the loose octree has been constructed,
the bounding boxes can be calculated as described in [Kar12] where
the paths from leaf nodes to the root are processed in parallel by
using atomic counters.

3.4. Optimizing the Trees for the View Direction

In Morton code-based algorithms, we can improve the order of
nodes by a simple modification of the code. The goal is to test
nodes, which are closer to the ray origin, first, to speed up first-hit
intersection tests. Since we rebuild the tree in each frame, we can
presort the geometry according to the global view direction. There-
fore, we modify the Morton codes before sorting in two ways:

1. Each bit is negated, dependent on the sign of the related coor-
dinate in the view direction. Usually, the Morton code enumer-
ates the primitives in ascending order in each dimension. If the
view direction is negative, toggling the related bits produces a
descending order, which means that primitives are always or-
dered in the view direction afterwards.

2. In the 3D Morton code a triple of bits is associated with the
dimensions x,y and z (in that order). We change the order ac-
cording to the absolute values of the view direction to test the
dimension with the largest changes first. For example if y is the
fastest changing dimension, y will be set as the first bit and con-
sequently the split in y direction will occur first in the binary
tree.

This optimization improves the performance of our stack free
traversal algorithm of the octree resulting from the LOBVH from
Section 3.2 by an order of magnitude. For our memory efficient al-
gorithm LLBVH from Section 3.3 and LBVH we use a stack-based
traversal of the binary trees. Since this algorithm already expands
the closer node first, the effect of the above modification is almost
non-existent.

c© 2018 The Author(s)
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Figure 5: Performance comparison for particle mixture scenes of
1‘000‘000 spheres.

4. Evaluation

We proposed two different build strategies based on the concept of
loose octrees. The first (LOBVH described in section 3.2) assigns
geometry directly to a large array, followed by a compaction step.
In LOBVH the fast growing array-size for larger octrees limits the
number of possible levels. Our second method (LLBVH described
in section 3.3) builds a binary tree with a modified version of the
LBVH algorithm [Kar12]. The difference is that we still add data to
different levels of the tree based on the loose octree idea. The two
binary tree builders LBVH and LLBVH are both limited by the
Morton code length which we set to 30 bit in all benchmarks. This
produces binary trees with at most 30 levels which would be equiv-
alent to a 10 level octree. For the octrees of the LOBVH builder we
use a different number of levels for each scene and always enable
the Morton code modification as described in Section 3.4.

We report test results on a GeForce 1080. In order to measure the
performance of BVHs, we use Aila’s et al. ( [AL09], [ALK12]) ray
tracing framework, compare performance by tracing the exact same
set of rays and use the same intersector with each ray tracing im-
plementation. We adopt the implementation of LBVH from [DP15]
with extra operations omitted. For scan and sort operations we ap-
ply the CUB library [Nvi18].

4.1. Particle Mixtures

Our first test scenarios are the results of a particle mixture simula-
tion. Figure 5 shows two distinct situations in such a simulation.
The first is the initial state in which spheres are uniformly dis-
tributed and may overlap a lot, the second situation is the result
after several iterations where the overlap of spheres is minimized
and their distribution is not uniform anymore.

For LOBVH we set the maximum octree level to 6. With max-
imum octree level set to 7, the construction time is increased by
about 70%, while keeping up similar tracing times. The memory
requirements for the other two methods is higher because of the
bigger number of internal nodes in the binary tree. If we allowed 7
levels in the octree, LOBVH would already require eight times the

memory (≈ 400 MB); 10 levels would even require over 200 GB.
This shows why we call LLBVH memory efficient.

Comparing LBVH with LLBVH, it does not pay off to add the
larger spheres further up in the tree. In any case does the construc-
tion time increase more than the tracing time could be reduced.
However, in the INITIAL scenario our method produces the slightly
better hierarchy because LBVH only uses the centroids of spheres
and therefore puts overlapping large and small spheres into the
same leaf nodes resulting in bad bounding volumes.

4.2. Triangles

Since, in most applications, acceleration structures are used for
triangle scenes, we compare our algorithm for a number of such
scenes in Figure 6. For LLBVH we expected a performance gain
similar to SBVH [SFD09], because we add larger triangles at the
top of the hierarchy. Often our algorithm has the slower build time
compared to LBVH. The gain in the tracing time is, if at all, mini-
mal and sometimes even worse. The only scene for which LLBVH
is faster by about 4% is also the HAIR BALL. This scene is similar
to the simulation output as it consists of many very uniformly dis-
tributed primitives with high occlusion. It is also the only scene for
which LOBVH is not significantly slower. Indeed, LOBVH is even
faster than both other methods for this specific scene.

With respect to memory requirements our LLBVH is often better
than LBVH whereas LOBVH can be better or worse depending on
the chosen level. We tested 6,7 and 8 levels for the dense octree and
report the results with the best round-trip-times in the figure. While
tracing time often improves for 8 levels, the build time increases by
a similar factor like the memory.

Other methods like HLBVH are expected to have lower timings,
because they all add optimization operations to the LBVH method.
Since construction time already dominates the benchmarks in Fig-
ure 6, the gain in tracing performance of this methods will not suf-
fice for better round-trip-times.

5. Conclusions

We introduced a new fast way, based on a loose octree, to take the
spatial extent of primitives into consideration for building a BVH.
The implementation based on the dense structure performs well for
highly complex/occluded scenes such as the particle mixing and the
hair ball scene. We also proposed a memory-efficient implemen-
tation, to reduce the memory requirement when BVHs with finer
levels are required. The memory-efficient algorithm can be seen
as a generalization of the state-of-the-art parallel construction for
LBVH with the size of primitives explicitly being considered. Our
methods show good performance for real-time ray tracing targeting
fully dynamic scenes, especially for primitives with random posi-
tions in space. For traditional triangle scenes, our memory-efficient
algorithm yields comparable results with one of the fastest methods
(LBVH) being used for real-time ray tracing.

For future work, we intend to investigate on how to improve the
tree quality by applying SAH but without introducing too much
extra overhead. Possibly the memory requirement for our LLBVH
can be reduced, if either kDFS or m′ can be omitted. Therefore, both
sorting and the later comparisons need to use the same key.

c© 2018 The Author(s)
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Figure 6: Performance comparison for different triangle scenes.
LLBVH often uses less memory, but takes more time than LBVH. In
LOBVH the memory requirement depends on the maximum octree
level which is 6 or 7 as noted next to the method label. The number
of triangles is shown on the side of each scene.
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