
O R D E R I N D E P E N D E N T T R A N S PA R E N C Y
A C C E L E R AT I O N

B A C H E L O R T H E S I S

presented by

felix brüll

Computer Graphics Group
Department of Computer Science

Clausthal University of Technology

Felix Brüll: Order Independent Transparency Acceleration

student id

464266

assessors

First assessor: Prof. Thorsten Grosch
Second assessor: Prof. Olaf Ippisch

submission date

September 14. 2018

S TAT U T O RY D E C L A R AT I O N

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe und dass alle Stellen dieser Arbeit, die wörtlich oder sinngemäß
aus anderen Quellen übernommen wurden, als solche kenntlich
gemacht wurden und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsstelle vorgelegt wurde.

Des Weiteren erkläre ich, dass ich mit der öffentlichen Bereitstellung
meiner Abschlussarbeit in der Instituts- und/oder Universitätsbiblio-
thek nicht einverstanden bin.

Die öffentliche Bereitstellung der PDF Datei auf Internetseiten der
Universität ist gestattet.

Clausthal-Zellerfeld, September 14. 2018

Felix Brüll

iii

A B S T R A C T

Real-time transparency rendering for a high number of transparent ob-
jects on the GPU is still an open problem. Order-independent trans-
parency algorithms provide an acceptable approximation for trans-
parency in real-time. This work investigates Adaptive Transparency
and Multi-Layer Alpha Blending, two of the leading order-independent
transparency algorithms, and improves their performance by up to 30%.
The techniques and data structures that were used to accelerate those
algorithms can be used for similar algorithms as well.

Z U S A M M E N FA S S U N G

Das Darstellen von vielen transparenten Objekten in Echtzeit ist
immer noch ein offenes Problem. Order-Independent Transparency
Algorithmen bieten eine gute Annäherung für Transparenz in Echtzeit.
Diese Arbeit untersucht Adaptive Transparency und Multi-Layer
Alpha Blending, zwei der führenden Order-Independent Transparency
Algorithmen, und verbessert ihre Leistung um bis zu 30%. Die
Techniken und Datenstrukturen, die verwendet wurden, um diese
Algorithmen zu beschleunigen, können auch für ähnliche Algorithmen
verwendet werden.

v

C O N T E N T S

1 introduction 1

2 fundamentals 3

2.1 Graphics Pipeline . 3

2.2 GPU Architecture . 8

2.3 Transparency . 11

2.4 Scenes . 13

3 related work 15

3.1 Per-Pixel Lists . 15

3.2 Depth Peeling . 16

3.3 K-Buffer . 16

3.4 Per-Pixel Packed Arrays 17

3.5 Other OIT Techniques . 18

3.6 Adaptive Transparency . 20

3.7 Multi-Layer Alpha Blending 24

4 general optimizations 27

4.1 Storage . 27

4.2 Spinlock . 30

4.3 Register . 32

4.4 Insertion into Sorted List 34

4.5 Sorting . 35

4.6 Stencil Buffer . 38

5 unsorted multi-layer alpha blending 41

5.1 Idea . 41

5.2 Algorithm . 41

5.3 Results . 43

6 adaptive transparency optimizations 45

6.1 Unsorted Adaptive Transparency 45

6.2 Linked Array Adaptive Transparency 46

6.3 Height Adaptive Transparency 47

6.4 Unsorted Height Adaptive Transparency 52

7 conclusion and future work 59

bibliography 61

a appendix 65

a.1 HAT Error With Two Underestimations 67

vii

A C R O N Y M S

ALU Arithmetic Logical Unit

AT Adaptive Transparency

FPU Floating Point Unit

GPC Graphics Processing Cluster

HAT Height Adaptive Transparency

LAAT Linked Array Adaptive Transparency

LD/ST Load/Store Unit

MLAB Multi-Layer Alpha Blending

MSE Mean Squared Error

OIT Order-Independent Transparency

PC Program Counter

ROP Render Output Unit

SFU Special Function Unit

SM Streaming Multiprocessor

SSBO Shader Storage Buffer Object

UAT Unsorted Adaptive Transparency

UHAT Unsorted Height Adaptive Transparency

UMLAB Unsorted Multi-Layer Alpha Blending

VRAM Video Random Access Memory

ix

Figure 1.1: The San Miguel scene with transparent glasses. Courtesy of
Guillermo M. Leal Llaguno.

1
I N T R O D U C T I O N

Real-time rendering is used in games and simulations to produce
images for a 3D scenario with at least 25 frames per second. A
dedicated device is required to produce high-quality images in real-
time.

This device is called the graphics card, and it performs hardware
accelerated rendering according to the graphics pipeline. The graphics
pipeline (Section 2.1) is a widespread model which describes how to
transform 3D geometry into a 2D image.

Most games and simulations are using transparent objects like
glass (see Figure 1.1) or fog-particles. Unfortunately, rendering
transparency with the graphics pipeline can be quite difficult.
Since transparency rendering usually uses so-called alpha blending
(Section 2.3), transparent geometry must be drawn in back to front
order1 or vice versa. Hence, it is called (geometry) order dependent.
Figure 1.2 shows what happens if the geometry is not drawn in back
to front order. In this example, objects from the background appear
to be in the foreground (compare Figure 1.2 and Figure 1.3). However,
sorting the geometry is too expensive for a real-time 3D application
with many transparent objects. Therefore, a technique called Order-
Independent Transparency (OIT) is required to draw transparent
geometry without sorting the geometry beforehand. Unfortunately, a
fast and correct solution for OIT is still an open problem.

1 back to front from the camera’s perspective

1

2 introduction

Figure 1.2: Alpha blending with
unsorted geometry.

Figure 1.3: Alpha blending with
sorted geometry.

This work investigates and improves Adaptive Transparency (AT)
and Multi-Layer Alpha Blending (MLAB) which are two state of the
art OIT algorithms. The next chapter introduces the fundamentals of
real time transparency rendering on the GPU. Chapter three gives a
brief overview about the evolution of OIT algorithms and explains AT

and MLAB in detail. The fourth chapter presents several techniques to
accelerate OIT algorithms in general, including storage optimizations,
register usage and a comparison of sorting algorithms for lists with
a fixed size. In chapter five, I modified MLAB by storing the per-pixel
list nodes in an unsorted manner which accelerates the algorithm by
up to 30%. Chapter six discusses a new and better heuristic for the AT

node compression. Thereafter, a modified version of AT with the new
compression heuristic is developed that stores the per-pixel list nodes
in an unsorted manner and is up to 24% faster than AT.

2
F U N D A M E N TA L S

2.1 graphics pipeline

This section provides a simplified overview of the graphics pipeline on
the GPU which is usually used to create real-time 3D applications.

In short: The application submits a 3D model to the GPU. On the
graphics card, the geometry is first transformed and then projected
onto a pixel grid (rasterization) for the 2D image. The GPU allows
the application to customize several steps of this procedure. OpenGL
provides an API for the graphics pipeline on the graphics card. The
simplified OpenGL graphics pipeline is shown in Figure 2.1.

In the following, every step of this procedure will be explained in
detail.

Framebuffer Fragment Shader Depth Test Stencil Test

RasterizationClippingVertex ShaderMesh

Test ok Test ok

Visible

Figure 2.1: Simplified OpenGL pipeline.

Mesh

3D models are usually described with a list of triangles called mesh.
The triangles describe the surface of an object (see Figure 2.2). The
corner position with associated attributes is called vertex. Vertices
usually hold information about the 3D position, surface normal and
color of the triangle. An example for vertices is shown in Figure 2.3. V0,
V1, V2 and V3 are four different vertices with a 3D position attribute.
A triangle mesh describes how to connect vertices to form a 3D model.
As shown in Figure 2.3, the vertex list (V0, V1, V2, V2, V1, V3) with
V0-V1-V2 and V2-V1-V3 describes two separate triangles where some
triangle vertices (e.g. V1 and V2) appear multiple times causing great
data redundancy for large geometry.

A so called indexed representation is better for large meshes. The
indexed version requires two buffers. The first buffer contains all
vertices: (V0, V1, V2, V3). The second one consists of indices referring
to vertices from the first buffer: (0, 1, 2, 2, 1, 3).

3

4 fundamentals

Figure 2.2: Deer represented by a
triangle mesh.

1 2-1-2

1

2

-1

-2

x

z

V0 (-2, 0, -2)

V1 (-2, 0, 2) V3 (2, 0, 2)

V2 (2, 0, -2)
Figure 2.3: Triangle mesh that de-
scribes a quad.

Vertex Shader

After submitting the mesh to the GPU, the vertex shader is executed
for each triangle vertex. Shaders are programs for the GPU written
by the application programmer. The vertex shader typically transforms
the vertices so that they can be projected onto a 2D image plane later.

OpenGL only draws geometry that appears in the canonical volume
which is defined as V := [−1, 1]3. The x-and y-position within the
canonical volume determines the pixel coordinate of the 2D image
projection, and the z-position represents the depth that is used for the
depth test which will be explained later.

In order to transform the vertices into the canonical volume, each
vertex is transformed through the following coordinate systems:

1. Model space (Figure 2.3): The coordinate system of the original
mesh is called model space.

2. World space (Figure 2.4): This coordinate system describes how
all objects are related to each other within the scene.

3. Camera space (Figure 2.5): This coordinate system represents the
scene from the camera’s perspective. The system origin is the
camera position and the z-axis is the view direction of the camera.
The area between the red rays describes the camera’s field of view
(FOV).

4. Canonical volume (Figure 2.6): The blue area in the camera space
is called the view frustum. This frustum is the part of the actual
field of view that will be transformed into the canonical volume.
This transformation is not linear and distorts the geometry (see
Figure 2.7).

2.1 graphics pipeline 5

0 1 2 3 4-1
0

1

2

3

4

-1

x

z

Mesh

Camera

Figure 2.4: World
space.

0 1 2-1-2
0

1

2

3

4

-1

x

z

View
Frustrum

Figure 2.5: Camera
space.

1-1

1

-1

x

z

Figure 2.6: Canonical
Volume.

Figure 2.7: A perspective distortion occurs when the view frustum is
transformed into the canoncial volume.

Additionally, the vertex shader can forward information to the
fragment shader. Note that the vertex shader merely possesses
information about the currently processed vertex and not about the
entire triangle or mesh.

Clipping

In this stage, every triangle is clipped2 into the canonical volume which
can result in subdividing a triangle as shown in Figure 2.8. Clipping is
performed to avoid computing pixel colors for pixels that are outside
of the screen.

Rasterization

The rasterizer generates a fragment for each pixel of the color buffer
that would be covered by the previously clipped triangle. The triangle
covers a pixel if the pixel center is inside of the triangle as shown
in Figure 2.9. A fragment holds information about a single point on
a triangle and will be used to determine the pixel color. The white
points in Figure 2.9 are the generated fragments with interpolated
triangle information. For transparency rendering, multiple fragments
are combined to get the final pixel color. The following sections
describe what happens with each fragment.

2 cutting out parts that are not in the volume.

6 fundamentals

1-1

1

-1

x

z

Figure 2.8: Clipped ver-
tices.

v1 {1, 0, 0}

v2 {0, 1, 0}

v3 {0,0,1}

{0.85,0.05,0.09}

{0.45,0.45,0.09}

{0.05,0.85,0.09}

Figure 2.9: Rasterized triangle with interpo-
lated colors in a 3x3 color buffer. The colored
pixels are fragments.

Stencil Test

In addition to the color buffer which contains color information, there
is a stencil buffer of the same dimension that contains a bitmask. The
stencil test uses the stencil buffer to mask out specific areas of the
screen. However, by default, the stencil test is disabled and can be
disregarded for now. This test will be explained in a later chapter.

Depth Test

Similarly to the stencil test, the depth test uses a depth buffer to
compare the depth of the current fragment with the corresponding
depth in the depth buffer and it can further decide to discard this
fragment. As for classical hidden surface removal, the depth test
succeeds if and only if the current fragment depth is smaller than
the value stored in the depth buffer. This is the case when the current
fragment is closer to the camera than the previously stored fragment.

Fragment Shader

Each generated fragment that passes the depth and the stencil
test will result in a new fragment shader invocation. Usually, this
stage determines the color of the fragment. This shader receives the
interpolated output from the vertex shaders as shown in Figure 2.9.

Furthermore, this shader is able to change the fragment depth or
discard the fragment entirely. However, if the shader is programmed to
do this, the stencil test and the depth test cannot be evaluated before
execution of the fragment shader and have to be evaluated afterward.

The act of performing the depth and stencil test before the fragment
shader is called early depth test. Using the early depth test is
recommended because it can avoid invocations of the fragment shader.

2.1 graphics pipeline 7

Framebuffer

This stage decides how the color of the fragment, which was
determined by the fragment shader, modifies the actual color buffer. If
nothing is specified, the new fragment overwrites the fragment in the
color buffer. Additionally, the depth of the fragment will be written
into the depth buffer if depth writing is enabled. Blending allows
combining the old and new fragment color in a predefined fashion
instead of just choosing the new one. The following formula is used
for blending:

C = Csrc ·Osrc +Cdst ·Odst

Csrc and Cdst are the new fragment color and the old fragment color
respectively. Osrc and Odst can be set by the application. By default Osrc

is set to one and Odst is set to zero:

C = Csrc · 1+Cdst · 0

This effectively overwrites the old fragment color with the new
fragment color. However, for more advanced rendering techniques the
alpha component of the color can be used as well. A fragment has four
color channels. The red, green and blue channels describe the color.
The fourth channel is called the alpha channel (opacity) and can be
used for color manipulation with the blending equation. Traditional
alpha blending (see Section 2.3) requires the following formula:

C = Csrc ·αsrc +Cdst · (1−αsrc)

The alpha component of the new fragment is used to combine both
fragments. Osrc is set to αsrc and Odst is set to (1−αsrc).

8 fundamentals

2.2 gpu architecture

GPU

GPC

GPC

VRAM

ROP

ROP

ROP

ROP

ROP

ROP

...SMSM

Raster Engine

Memory
Controller

...SMSM

Raster Engine
Memory

Controller

L2 Cache

Giga Thread Engine

Host Interface

Figure 2.10: GPU architecture.

This section describes the journey of a triangle through the hardware
architecture of a GPU, based on the NVIDIA GeForce GTX 980 graphics
card description [NVI]. Additional information was taken from Life of
a triangle - NVIDIA’s logical pipeline [Kub15].

Figure 2.10 shows a simplified model of a GPU. The Host Interface
receives the mesh draw call from the CPU. The Giga Thread Engine
distributes the work to multiple Graphics Processing Clusters (GPCs).
Each GPC is a self-contained GPU with a dedicated Raster Engine and
several Streaming Multiprocessors (SMs).

After receiving the triangle data, the GPC passes the triangles
to its SMs (see Figure 2.11). The PolyMorph Engine is responsible
for executing the vertex shader for each triangle. First, the engine
fetches the vertices from the Video Random Access Memory (VRAM).
Afterwards, the engine schedules warps to execute the vertex shader
for individual triangles.

A warp (see Figure 2.12) is a cluster of small processors which
execute the shader code in parallel. However, the warp cores are not as
powerful as CPU cores. Each core has a dedicated Arithmetic Logical
Unit (ALU) and Floating Point Unit (FPU) but no Program Counter
(PC) or stack. The Warp Scheduler manages the PC and dispatches
commands to all cores. Individual cores can be masked3 out to enable
conditional code execution. Consequently, diverging cores increase the
execution time as shown in Figure 2.13. Cores use the registers from
the register file for intermediate storage. The register file features far
more registers than typical CPU’s. The GTX 980 has about 16.384 32-

3 cores that are masked out ignore all incoming commands from the dispatch unit

2.2 gpu architecture 9

SM

...

Shared Memory

...

Tex UnitTex UnitTex Unit

Texture / L1 Cache

Tex Unit

WarpWarp

Instruction Cache

PolyMorph Engine

Figure 2.11: Streaming Multiproces-
sor.

Warp

Core

.........

SFULD/STCoreCoreCoreCore

SFULD/STCoreCoreCore

Register File

Dispatch UnitDispatch Unit

Warp Sheduler

Instruction Buffer

Figure 2.12: GPU warp.

ifif then elseelse
Core 0

Core 1

Core 2

Core 3

instructions

Figure 2.13: Due to the shared PC, execution of the first branch leaves half
the cores inactive because they diverge (left). However, if-then-else causes no
problem if each core executes the same path (right).

bit registers and 32 cores per warp. Therefore, the Warp Scheduler
can execute multiple tasks at once. For instance, if the current task
is waiting for a block of memory, the Warp Scheduler switches to
another task in the meantime. Switching tasks is very fast since every
task has its own set of registers. However, the more registers a task
needs, the fewer tasks per warp are executed, and less work is done
while waiting for instructions to complete. This phenomenon is called
register pressure.

The Load/Store Unit (LD/ST) is used to communicate with global
memory. The Special Function Unit (SFU) can compute a predefined
complex function, such as sine, cosine or square root, within one clock
cycle. The GTX 980 features eight LD/STs and eight SFUs.

Additionally, each warp can access the Texture Units of its SM.
Texture Units are used to retrieve interpolated texture colors from
existing textures. This process is hardware accelerated and is as
expensive as retrieving non-interpolated colors.

10 fundamentals

Shared memory can only be accessed by warps within the SM.
Shared memory is used as additional fast intermediate storage for more
complex computations.

After the vertex shader computation finishes, the PolyMorph Engine
clips the generated triangle and prepares it for rasterization. Now, the
triangle leaves its current GPC, and the PolyMorph Engine notifies the
Giga Thread Engine. Each GPC is responsible for rasterizing different
rectangular areas of the framebuffer. The Giga Thread Engine splits the
triangle accordingly and forwards it to the corresponding GPCs.

The Raster Engine within the GPC is used to generate the fragments.
First, the stencil and depth-tests are executed. Afterwards, groups of 32

fragments are forwarded to one of the local SMs to execute the fragment
shader. After execution of the fragment shader, the Raster Engine uses
Render Output Units (ROPs) to write the fragments into the framebuffer.
The ROP compresses fragments before sending them to the framebuffer
to reduce bandwidth.

2.3 transparency 11

z

y

Pixel 2

Pixel 1

Figure 2.14: Two lines that
cannot be sorted according to
depth due to their orientation.

z

y

Figure 2.15: Fragment layers along the
z-axis. Fragments with the same color
form a fragment layer.

2.3 transparency

In a real-world scenario, several objects have transparent properties
such as water and glass. Those objects typically have a material
property called alpha α ∈ [0, 1] which represents the opacity where
α = 1.0 is fully opaque and α = 0.0 is fully transparent. Alpha blending
[PD84] was introduced to combine transparent objects. Equation 2.1
describes how to blend a list of fragments with αi and ci being the
alpha value and color of each fragment.

C0 = α0c0

Cn−1 = αn−1cn−1 + (1−αn−1) ·Cn−2 (2.1)

However, the fragment list must be sorted with descending fragment
depth because the fragment combination of Equation 2.1 is not
commutative (see Figure 1.2). Thus, this equation is (fragment) order-
dependent.

One approach for rendering transparent objects requires the
application to sort every triangle of all meshes before submitting
them to the GPU. However, sorting triangles does not suffice to
ensure correct fragment ordering. In the case of overlapping triangles
fragments, the fragment order cannot be achieved by ordering triangles
(see Figure 2.14). This problem can be fixed by subdividing conflicting
triangle. Note that everything needs to be re-sorted if the camera
view direction changes. Thus, this approach is not very efficient for
rendering transparent objects.

Another approach resolves the ordering problem on the fragment
level by temporarily storing every generated fragment into a per-
pixel list (see Figure 2.15). Afterwards, the list is being sorted and

12 fundamentals

1

(1−α0)

(1−α0)(1−α1)

z0 z1

z

vis(z)

Figure 2.16: Example of the visibility function.

Equation 2.1 is used to blend the fragments. Since this approach
does not require a sorted geometry, it is known as Order-Independent
Transparency (OIT).

It is possible to derive a different approach for OIT from the alpha
blending equation (Equation 2.1). First, the recursion is resolved:

Cn−1 =

n−1∑
i=0

αici n−1∏
j=i+1

(1−αj)

 (2.2)

Note that, depending on the fragment index, only alpha values of
fragments with a smaller depth value are used in the product. After
addition of the depth information zi to each fragment, this product
can be written as:

vis(z) :=
∏

(zi,αi):zi<z

(1−αi) (2.3)

Which leads us to the following formula:

Cn−1 =

n−1∑
i=0

αicivis(zi) (2.4)

Equation 2.3 is also known as the visibility function since it indicates
the occlusion of a fragment at any depth. Figure 2.16 illustrates an
example of the visibility function. The geometry can be rendered in
any order if the visibility function is known. In general, two render
passes are required to implement this approach. The first render pass
determines vis(z) by storing the relevant alpha-depth pairs. The second
render pass is used to blend all fragments. This approach uses less
memory than the previous one since only depth and alpha must be
stored and not the fragment color, but an additional render pass is
required.

2.4 scenes 13

2.4 scenes

This section gives a brief overview of the scenes that were used for this
work. All scenes are rendered with a screen resolution of 800x800 pixels.
The median after 2000 iterations was used to describe the rendering
times.

San Miguel

San Miguel scene. San Miguel (different perspective).

The San Miguel scene from Guillermo M. Leal Llaguno consists of
about 10 million triangles and has 0.5 transparent fragments per pixel
on average. This scene is used to represent a real-world scenario with
few transparent objects.

Powerplant

Powerplant scene. Powerplant without transparency.

14 fundamentals

The Powerplant scene published by the University of North Carolina
consists of about 13 million triangles and has 11 transparent fragments
per pixel on average. The original materials were modified into
transparent materials to achieve the high number of transparent
fragments per-pixel. Thus, this scene is used to model a scenario with
an extraordinary amount of transparent fragments.

Village

Village scene. Village without transparency.

The village scene was created by me and consists of only 17 thousand
triangles and has 1.6 transparent fragments per pixel on average. This
scene is used because it has slightly more transparent fragments than
the average real-world scenario but not as many as the Powerplant
scene.

3
R E L AT E D W O R K

This chapter gives a brief overview of the evolution of Order-
Independent Transparency (OIT) algorithms. Later, Adaptive Trans-
parency (AT) and Multi-Layer Alpha Blending (MLAB) will be explained
in more detail because this work focuses on optimizing these algo-
rithms.

3.1 per-pixel lists

The A-Buffer algorithm [Car84] requires a per-pixel list to capture all
fragments. After capturing all fragments, each list gets sorted according
to fragment depth. Then, all fragments are blended to retrieve the final
pixel color. This algorithm could not be implemented on graphics cards
for a long time but was frequently used for offline rendering4.

After the introduction of atomic operations on graphics cards5, Yang
et al. [YHGT10] realized the A-Buffer with a linked list implementation
for modern GPUs. A memory pool with a fixed size is allocated to store
the nodes for the list because dynamic memory allocation (for nodes)
was not possible on the GPU6 at the time. Thus, this implementation
can only store a fixed number of fragments.

The dynamic fragment buffer [MCTB12] solves this problem by
using two render passes. In the first pass, a buffer is used to count
the number of transparent fragments per pixel (counting buffer in
Figure 3.1). Afterwards, a prefix sum7 is performed to generate the
offsets for the per pixel arrays (base buffer). Then, the fragment buffer
gets resized if required. In the second render pass, the fragments are
transferred into the fragment buffer according to the base buffer offsets.
After a fragment is inserted into the buffer, the corresponding value in
the base buffer gets incremented in order to store the next fragment
appropriately. Finally, each list gets sorted and blended.

Fast sorting for exact OIT of complex scenes [KLZ14] proposes
optimizations for per-pixel lists. Some of those optimizations are
applicable for this work as well and will be explained in the next
chapter.

4 refers to rendering on the CPU
5 2009 for DirectX, 2011 for OpenGL
6 dynamic memory allocation is possible in newer versions of CUDA
7 each value in the array becomes the sum of all previous values

15

16 related work

dynamic fragment buffer

f7f6f5f4f3f2f1f0

base buffer

8555

333

220

300

200

10

counting buffer

2

offset in buffer

prefix
sum

Figure 3.1: Dynamic fragment buffer algorithm.

3.2 depth peeling

Depth Peeling [Eve01] solves OIT by capturing only one fragment
layer per render pass (fragment layers are shown in Figure 2.15).
However, it needs k render passes, with k being the maximum number
of fragments per pixel. This approach does not require a variable
amount of memory since each layer gets immediately blended with the
framebuffer after it is captured. More recent Depth Peeling techniques
can capture up to 32 layers at once [BM08; LWXW09; LHLW09].

3.3 k-buffer

The k-Buffer [BCL+07] captures the k foremost fragments for each
pixel in a single render pass and discards the remaining ones. This
implementation suffers from flickering artifacts caused by read-modify-
write hazards during fragment insertion. Those hazards could not be
avoided at that time since mutual exclusion for fragment insertion was
not possible due to the lack of atomic operations.

The k+-Buffer [VF14] gets rid of the flickering artifacts by using spin-
locks powered by atomic operations. Additionally, a dynamic memory
allocation strategy estimates the optimal k value for the current frame
and resizes the k-Buffer accordingly.

The variable k-Buffer [VVPM17] allocates a fixed amount of memory
such that each pixel can store up to k fragments on average. However,
the per-pixel fragment lists are smaller or bigger than k depending
on the depth complexity8 of the current pixel and other factors. This
approach uses its storage more efficiently than the previous k-Buffer
techniques.

8 indicates the amount of transparent fragments for one pixel

3.4 per-pixel packed arrays 17

z

vis(z)

z

x Pixel
Raster

Figure 3.2: Opacity Shadow Maps
[KN01].

z

x

z

vis(z)

Pixel
Raster

Figure 3.3: Deep Opacity Maps
[YK08].

A scenario with unevenly distributed transparent geometry. Opacity Shadow
Maps require a higher grid resolution than Deep Opacity Maps to
approximate the visibility function.

3.4 per-pixel packed arrays

Most of the following algorithms store the visibility function in a
compressed form that requires a fixed amount of memory per-pixel.
Note that those algorithms require two render passes as described in
Section 2.3.

Opacity Shadow Maps [KN01] capture fragment occlusion (inverse
visibility) in a uniformly discretized grid as shown in Figure 3.2.

Deep Opacity Maps [YK08] work similar to Opacity Shadow Maps.
In this technique, each pixel grid starts at the first occurring fragment
(see Figure 3.3).

Occupancy Maps [SA09] are using a bitfield to indicate the occlusion.
This works well for occluders with the same transparency, for example
hair. The bitfield basically is a higher resolution Opacity Shadow Map
that only indicates if a grid cell is occluded. Thus, the cell has no
information about the amount of occlusion.

Fourier Opacity Maps [JB10] are storing the visibility function in the
Fourier basis with a fixed number of Fourier terms. This results in soft
transition within the visibility function which is good for soft occluders
like hair and smoke but not good for sharp occluders like glass.

Adaptive Transparency (AT) [SML11] stores a fixed number of depth-,
transmittance pairs per-pixel to represent the visibility as a piecewise
constant function.

Multi-Layer Alpha Blending (MLAB) [SV14] stores a fixed number
of depth-, color-, alpha tuples per-pixel. If the tuple limit per-pixel is
reached, two tuples will be blended to allow insertion of a new tuple.
Note that this approach does not require an additional geometry pass
since all color information is stored as well. Only a single fullscreen

18 related work

Figure 3.4: Unsorted Figure 3.5: Meshkin Figure 3.6: Bavoil

Figure 3.7: McGuire Figure 3.8: McGuire
Depth

Figure 3.9: Sorted

Six colored squares and particle billboards with α = 0.35 at different depths.
From left to right: The unsorted OVER worst case, blended order-independent
transparency approximations of increasing quality, and the common sorted
OVER compositing [MB13].

render pass9 is required to blend all tuples to obtain the final fragment
color.

Moment-Based Transparency [MKKP18] stores a fixed number of
moments (similar to Fourier terms) to represent the visibility function.

3.5 other oit techniques

Sort-Independent Alpha Blending [Mes07] modified the non-
commutative blending operator to a similar commutative blending
operator (Figure 3.5). Unfortunately, this approach only works well if
the α values are small and the fragment colors are similar to each other.

Bavoil & Meyers Weighted Average [BM08] refined Meshkin’s
blending operator with a better approximation for fragment color and
coverage (see Figure 3.6).

9 This can be done by drawing a quad that fills the entire screen. Thus, the fragment
shader will be executed for each pixel on the screen.

3.5 other oit techniques 19

Weighted OIT [MB13] refined the commutative blending operator
again and added additional depth weights to each fragment which
is similar to the occlusion given by the visibility function. See
Figure 3.7 for the result of the new blending operator without
depth weights. Figure 3.8 shows the result with the addition of
depth weights. Unfortunately, the depth weight function needs to be
reconfigured depending on the scene depth complexity which can be
quite challenging (see Figure 3.10).

Stochastic Transparency [ESSL10] uses a stochastic approach to blend
fragments but requires a large number of samples per pixel to avoid
noise artifacts.

Hybrid Transparency [MCTB13] proposes a transparency algorithm
that uses a slow but precise algorithm to combine important fragments
and a fast approximate algorithm to combine unimportant fragments.
The important fragments are usually the fragments which are closest
to the camera because they are less occluded. Therefore, a k-Buffer is
used for the precise algorithm. Weighted Average [BM08] is used for
the fast approximate algorithm.

20 related work

Gradient is too strong.

Gradient appears to be correct

Gradient is not strong enough.

Sorted reference.

Figure 3.10: Picking the correct depth weights for Weighted OIT can be quite
challenging.

3.6 adaptive transparency

Adaptive Transparency (AT) requires two render passes. In the first
render pass, a compressed version of the visibility function is
computed. In the second render pass, the transparent objects are

3.6 adaptive transparency 21

new fragment will be here

0.0

1.0

Transmittance

Distance from viewer (depth)

Distance from viewer (depth)

x (1 - alpha)

0.0

1.0

Transmittance

Figure 3.11: Fragment insertion for the AT visibility function. The red nodes
contain the fragment depth z and transmittance vis(z).

blended by using the computed visibility function (Equation 2.4). Since
the visibility function is a stepwise constant function by definition, AT

only stores the nodes where the function changes (see red nodes in
Figure 3.11). A fixed number of (depth, transmittance) nodes is stored
in a per-pixel array with ascending depth. Each node requires 8 bytes
of storage: 4 bytes for transmittance and 4 bytes for depth.

If a new fragment with opacity α should be inserted, the appropriate
insertion position is determined first. Afterwards, the transmittance of
each node that is occluded by the inserted fragment gets multiplied
with (1−α) (see Figure 3.11).

If the newly inserted fragment exceeds the fixed number of nodes,
additional compression is performed. To minimize the error caused
by the compression, the node with the least contribution to the
visibility function gets removed. Since the visibility function is a
stepwise constant function, the introduced error by removing a node
is proportional to the rectangular area between two nodes (see
Figure 3.12). Generally, three node removal strategies are possible:

1. Overestimation: The node gets removed from the list which raises
the visibility functions value until the next node.

2. Underestimation: The node gets removed from the list, and the
transmittance of the previous node is set to the transmittance of
the removed node.

22 related work

Underestimation
Overestimation

Distance from viewer (depth)

smallest area

0.0

1.0

Transmittance

Underestimation
Overestimation

Distance from viewer (depth)
0.0

1.0

Transmittance

Figure 3.12: Areas used for the AT compression. After the smallest area was
determined, an overestimation (blue) or an underestimation (green) of the
visibility function can be used to remove one node.

3. Both: Using either overestimation or underestimation depending
on the smallest error.

Generally, the underestimation has the least visible artifacts (see
Figure 3.13). Overestimation causes more artifacts because a lot of
fragments appear brighter than they should be. Darker fragments that
are produced by the underestimation do not stand out as much as
brighter fragments. Thus, AT uses only the underestimation.

The insertion of a new node takes place in the fragment shader of
the first geometry pass. The insertion must be protected by a spinlock
because concurrently inserting new fragments and compressing the
function does not work with the presented insertion algorithm. In
general, all nodes are initialized with a depth value of infinity and
a transmittance value of one to avoid additional insertion code for the
first n fragments.

Note that the compression of the visibility function depends on
the order of the inserted fragments. It is therefore recommended to
submit the geometry in the same order to avoid artifacts. However, the
fragment insertion order slightly changes between frames due to the
concurrent execution on the GPU (see Figure 3.14). Unfortunately, the
GPU only assures ordering for the fragments when they are written to
the framebuffer. The fragment shaders can be executed concurrently

3.6 adaptive transparency 23

Underestimation Overestimation Both Reference

Figure 3.13: The village scene rendered by AT with 8 nodes per-pixel.

AT 8 nodes AT 8 nodes 6X Difference

AT 12 nodes AT 12 nodes 6X Difference

Figure 3.14: AT flickering artifacts caused by the varying order of fragment
insertions between frames.

and out of order. Increasing the number of nodes reduces those
artifacts.

24 related work

3.7 multi-layer alpha blending

The concept of Multi-Layer Alpha Blending (MLAB) is based on the
recursive Alpha Blending Equation (Equation 2.1).

Two fragments fa := (ca,αa, za) and fb := (cb,αb, zb) with za < zb
can be blended like:

Cc = caαa + (1−αa)cbαb (3.1)

We define for each fragment f:

1. The pre-multiplied color Cf := cfαf
2. The transmittance Tf := (1−αf)

3. The depth Zf := zf
Thus, Equation 3.1 can be rewritten in the following manner:

Cc = Ca + TaCb

Another fragment fd = (Cd, Td,Zd) can be blended with Cc if Zd < Za
or Zd > Zb:

Tc := TaTb

Cfinal =

Cd + TdCc Zd < Za

Cc + TcCd Zd > Zb

Cd can not be blended with Cc if Zd > Za and Zd < Zb (Fragment
fd is positioned between fa and fb). Therefore, if more fragments are
blended this way, the range in which correct blending is not possible
grows.

MLAB tries to solve this problem by storing n (C, T ,Z) nodes per-
pixel. The nodes are sorted with ascending depth. Each node requires
8 byte of storage: 3 bytes for color, 1 byte for transmittance and 4 bytes
for depth. The final color, with respect to the opaque background color
Copaque, is computed as follows:

Cfinal = Copaque

n−1∏
i=0

Ti +

n−1∑
i=0

Ci

i−1∏
j=0

Ti

The first n fragments are inserted without merging nodes. Additional
fragments are inserted into the correct position within the sorted per-
pixel array first and then two adjacent nodes are merged since only n
nodes can be stored. Two elements of the array are merged as follows:

Ci = Ci + TiCi+1

Ti = TiTi+1

Zi = Zi

3.7 multi-layer alpha blending 25

The depth value of the first node (which is the smaller depth value)
is taken to guarantee correct blending of opaque surfaces which have
a transmittance of zero. Unfortunately, if another fragment is inserted
that is located between two merged nodes, proper blending is still not
possible. However, this scenario becomes less likely with more nodes.

The authors of MLAB tried to determine the most appropriate merge
position based on smallest color deltas, transmittance, and distance
from the viewer. According to the authors, merging nodes with the
smallest transmittance produces the most visually pleasing images.
Since the visibility function is a monotonically decreasing function, the
nodes with the smallest transmittance are the last two nodes.

Therefore, the algorithm to insert a fragment is relatively short:

Listing 3.1: MLAB fragment insertion

void insert(Fragment f){

Fragment frags[n + 1];

frags[0] = f;

// load per-pixel array

for(int i = 0; i < n; ++i)

frags[i+1] = LOAD(i);

// one-pass bubble sort to insert fragment

for(int i = 0; i < n; ++i){

if(frags[i].Z > frags[i + 1].Z){

Fragment temp = frags[i];

frags[i] = frags[i + 1];

frags[i + 1] = temp;

}

}

// merge fragments accordingly

Fragment merge;

merge.C = frags[n-1].C + frags[n-1].T * frags[n].C;

merge.T = frags[n-1].T * frags[n].T;

merge.Z = frags[n-1].Z;

frags[n-1] = merge;

// store per-pixel array

for(int i = 0; i < n; ++i)

STORE(i, frags[i]);

}

Usually, all nodes are initialized with (C = 0, T = 0,Z = ∞) to avoid
additional insertion code for the first n fragments. Furthermore, the
insertion of a new fragment must be protected by a per-pixel spinlock.
Note that the fragment compression of MLAB depends on the order
of the inserted fragments as well. Therefore, the compression changes
slightly between frames (see Figure 3.15).

26 related work

MLAB 8 nodes MLAB 8 nodes 6X Difference

MLAB 12 nodes MLAB 12 nodes 6X Difference

Figure 3.15: MLAB flickering artifacts caused by the varying order of fragment
insertions between frames.

AT 8: 5.8ms 4X Diff AT 12: 8.8ms 4X Diff

MLAB 8: 4ms 4X Diff MLAB 12: 5.8ms 4X Diff

Figure 3.16: Comparison between AT and MLAB. The diff-pictures describe the
difference to the sorted alpha blending solution.

MLAB produces faster and better images than AT (Figure 3.16). The
main overhead of AT are the two geometry passes.

4
G E N E R A L O P T I M I Z AT I O N S

This chapter discusses how to implement per-pixel packed array OIT

techniques in OpenGL. The example shader code is written in GLSL
(OpenGL Shading Language).

4.1 storage

In order to access our per-pixel array, some kind of read/write storage
is required. OpenGL provides two different types for read/write
storage that can be accessed from shaders. The Shader Storage Buffer
Object (SSBO) is similar to a CPU buffer that was allocated from the
heap. A texture mainly differs from an SSBO when accessing individual
elements.

Shader Storage Buffer

SSBO storage is a contiguous block of memory. Data within a SSBO can
be accessed by using a one dimensional index. The index for a per-pixel
array located at (x,y) ∈N2 can be calculated as follows:

index(x,y, i) = (y ·w+ x) ·n+ i (4.1)

w ∈ N is the width of the screen in pixels. n ∈ N is the number of
array nodes per pixel. i ∈ {0, 1, ...,n − 1} is the node index within a
per-pixel list .

Textures

Textures map 1D storage to 2D or 3D storage while preserving locality
of the data. This is achieved by using a space filling curve. Possible
space filling curves are the Z-order curve [Mor66] (shown in Figure 4.2)
or the Hilbert curve [Hub91]. Data locality is important because the
threads within a warp have very similar pixel coordinates. A 3D texture
can be used for Per-Pixel arrays. 3D textures preserve locality in all
three directions. However, our use-case requires a high locality in z-
direction (array nodes) and a lower locality for the other axes (pixel
coordinates).

27

28 general optimizations

Figure 4.1: SSBO (Equation 4.1). Figure 4.2: 2D Z-order curve.

Different 8x8 memory layouts (Number of nodes n = 1). The blue curve
describes the order of bytes in memory.

Interleaved Buffer

The interleaved SSBO (inspired by [Kno15]) provides a higher locality
for array nodes. Nodes with similar x-, y-coordinates are packed into
a group (see Figure 4.4). gx ∈ N and gy ∈ N describes the size of the
group in x and y direction.

gID =
y

gy
· w
gx

+
x

gx

gOffset = gID ·n · gx · gy
localID = (y mod gy) · gx + (x mod gx)

stride = gx · gy
index(x,y, i) = gOffset + localID + stride · i (4.2)

Table 4.1 shows the performance of the discussed storage options.
The interleaved SSBO is up to 8% faster than the texture. However, this
seems to strongly depend on the scene.

Unfortunately, the interleaved SSBO can cause problems if single
nodes are not aligned to 32 byte. The graphics card can only read/write
global memory in 32 byte chunks [Har13] which can cause lost updates
if the nodes are not aligned accordingly. Fortunately, this does not seem
to happen in the default MLAB implementation. However, the Unsorted
Multi-Layer Alpha Blending (UMLAB) which will be introduced in
Chapter 5 does not work with the presented interleaved SSBO. The lost
updates increase the flickering artifacts between two frames as shown
in Figure 4.5. This probably happens because UMLAB stores the nodes
in a random pattern after the algorithm is finished (scattered writes).

4.1 storage 29

0 1 2 3 0 1 2 3
0

0 1 2 3 0 1 2 3
128 129 130 131 132 133 134 135

1 2 3 4 5 6 7

Instructions
C
or

es

x=0
y=0

x=1
y=0

x=0
y=1

x=1
y=1

SSBO

Figure 4.3: Simple SSBO layout
(Equation 4.1).

0 0 0 0 1 1 1 1
0

2 2 2 2 3 3 3 3

2 3 4 5 6 7

Instructions

C
or

es

x=0
y=0

x=1
y=0

x=0
y=1

x=1
y=1

1

8 10 11 12 13 14 159

Coalesced SSBO

Figure 4.4: Interleaved storage
Equation 4.2.

A 2x2 warp accessing nodes concurrently (n = 4,w = 32). The interleaved
storage has better memory locality (gx = 2,gy = 2).

Aligned noise Unaligned noise Scene

Figure 4.5: Flickering artifacts in UMLAB (16 nodes) with interleaved SSBO

storage aligned to 32 bytes and without alignment. The noise was blurred
with a radius of two pixels to emphasize the difference.

Table 4.1: Texture (Tex), SSBO and interleaved SSBO (ISSBO) rendering times
in milliseconds (NVIDIA GTX 1080). The ISSBO has the group size of 8

(gx = 2,gy = 4) because it performed best. MLAB with 4 and 8 nodes per-pixel
was used for rendering. The time for rendering San Miguel times exclude the
opaque rendering time.

scene(nodes) tex ssbo issbo

Powerplant(4) 15.54 16.17 15.22

Powerplant(8) 17.93 18.28 16.94

Village(4) 1.29 1.60 1.31

Village(8) 1.74 2.32 1.74

San Miguel(4) 2.19 2.24 2.21

San Miguel(8) 2.30 2.44 2.42

30 general optimizations

4.2 spinlock

Spinlocks provide mutual exclusion for fragment insertion. To
maximize the fragment throughput, one lock per-pixel is required. A
2D integer texture can be used as the lock data. A pixel at (x,y) is
locked if the texture at (x,y) is equal to 1. The Pixel is unlocked if
the texture at (x,y) is equal to 0. The texture data is accessed via
atomic operations to avoid race conditions. The atomic compare-and-
swap operation can be used to acquire the lock. An atomic compare-
and-swap operation compares a reference value with the atomic value
and modifies the atomic value if and only if they match. In our case,
the atomic compare-and-swap tests if the atomic has a value of zero. If
the test succeeds, the atomic value is set to one and the lock is acquired.
After the fragment insertion, the atomic value will be set to zero by an
atomic exchange operation.

GLSL provides the imageAtomicCompSwap(texture, position, com-
pare, data) function for the atomic compare-and-swap. Note, that this
functions returns the value of the atomic before the atomic operation
took place.

A naive implementation of a spinlock is shown in Listing 4.1. The
memory barrier in line 3 is required to make sure that the data written
inside the insert() function becomes visible to other warps.

Listing 4.1: Naive spinlock

1 while(imageAtomicCompSwap(tex←↩
, xy, 0, 1) != 0);

2 insert(...);

3 memoryBarrier();

4 imageAtomicExchange(tex, xy, ←↩
0);

LX = line X
(left code)

............

Warp 1

Waiting for
Core 3

Waiting for
Core 2

L2L111L1L2

L2L1L1L2 11

L1L1L1L1

Core 4Core 3Core 2Core 1

Time Warp 2Texture

00

successsuccess

Figure 4.6: Deadlock.

Figure 4.6 describes how a deadlock occurs if two warps want to lock
the same two pixels of the screen. First, both warps request the lock
for the same two pixels. In this example, cores with the same color are
trying to lock the same pixel. However, only one core from the first
warp and one core from the second warp acquire the lock. This causes
a deadlock on the GPU because the individual cores can only advance
as a warp [Kub15]. This means, that one warp can only advance if all
cores acquired the lock in line 1.

4.2 spinlock 31

The critical section needs to be encapsulated in the loop to avoid a
deadlock (see Listing 4.2).

Listing 4.2: Improved spinlock

1 bool keepWaiting = true;

2 while(keepWaiting) {

3 if(imageAtomicCompSwap(tex←↩
, xy, 0, 1) == 0) {

4 insert(...);

5 memoryBarrier();

6 imageAtomicExchange(tex←↩
, xy, 0);

7 keepWaiting = false;

8 }

9 }

L9L9L9L9 00

L9L4-8L4-8L9 11

00 L2-3L2-3 L9L9

L8

x

L8L8L8

x L4-7L4-7

Warp 1

00

11

L1-3L1-3L1-3L1-3

Core 4Core 3Core 2Core 1

Time Warp 2Texture

00

successsuccess

In this case, the deadlock does not occur because the if statement
within the loop assures that cores release the lock after one iteration
(line 6).

Unfortunately, Listing 4.2 can cause some graphic cards drivers to
crash. This happens, because fragment shaders are always executed in
multiples of 2x2 pixel quads [Kub15]. These pixel quads are needed
to evaluate derivates for specific texture lookups (for example linear
interpolated texture lookups). Threads within that group, which do
not belong to the triangle are called helper invocations. According
to the specification: "Atomic operations to image, buffer, or atomic
counter variables performed by helper invocations have no effect on
the underlying image or buffer memory. The values returned by such
atomic operations are undefined." Thus, line 3 in Listing 4.2 returns
an undefined result for helper invocations which can cause those
invocations to repeat the loop until the driver eventually crashes10.
Fortunately, the addition of if(!gl_HelperInvocation) before the loop can
prevent the helper invocations from being stuck as shown in Listing 4.3.

10 the graphics card driver resets itself when a program does not terminate after several
seconds

32 general optimizations

Listing 4.3: Final spinlock

1 if(!gl_HelperInvocation) {

2 bool keepWaiting = true;

3 while(keepWaiting) {

4 if(imageAtomicCompSwap(tex, xy, 0, 1) == 0) {

5 insert(...);

6 memoryBarrier();

7 imageAtomicExchange(tex, xy, 0);

8 keepWaiting = false;

9 }

10 }

11 }

4.3 register

Working in global memory for the fragment insertion is too expensive
if each per-pixel node must be accessed more than once. It is therefore
recommended to create a temporary copy of the per-pixel array within
the fragment shader. Arrays are placed in registers or local memory (L1

cache or shared memory) depending on the usage. Registers are faster
than local memory but they cannot be dynamically indexed [KLZ14].

Thus, if the array indices are known at compile time, the array is
placed in registers. The following sections describe how to properly
work in registers.

Loop Unrolling

Loop unrolling eliminates loops with n iterations by writing the loop
body n times (see Listing 4.4).

Listing 4.4: Unrollable Loop

// before unrolling:

int array[4];

for(int i = 0; i < 4; ++i) {

array[i] = i;

}

// after unrolling:

int array[4];

array[0] = 0;

array[1] = 1;

array[2] = 2;

array[3] = 3;

Fortunately, the array indices in the example are known at compile time
due to the loop unrolling and the array can be placed in registers.

4.3 register 33

Sometimes more complex loop conditions can prevent the compiler
from unrolling loops. Adding an additional condition that indicates
the maximum loop iteration count can re-enable loop unrolling (see
Listing 4.5). Note, that the maximal loop iteration count must be known
at compile time to enable loop unrolling.

Listing 4.5: Complex loop condition

int array[4];

...

// not unrollable:

for(int i = 0; array[i] > 0; ++i) {

array[i] -= 1;

}

// unrollable:

for(int i = 0; array[i] > 0 && i < 4; ++i) {

array[i] -= 1;

}

// after unrolling

if(array[0] > 0){

array[0] -= 1;

if(array[1] > 0){

array[1] -= 1;

if(array[2] > 0){

array[2] -= 1;

if(array[3] > 0){

array[3] -= 1;

}

}

}

}

Note, that the compiler can decide to refuse loop unrolling if the
loop iteration count is too high (sometimes even 12 iterations can be
too many). Unfortunately, GLSL does not provide an option to force
unrolling. However, the graphic card manufacturers often provides
a preprocessor directive for this (#pragma optionNV (unroll all) for
NVIVIA graphic cards).

Assigning with dynamic index

Some algorithms require an assignment with a dynamically calculated
index. However, doing the dynamic assignment in Listing 4.6 will
prevent the compiler from placing the array in registers.

34 general optimizations

Listing 4.6: Dynamic assignment preventing register usage

int array[4];

// i is not known at compile time

int i = dynamicIndex();

array[i] = 2;

Assigning a value in an unrollable loop (see Listing 4.7) allows the
array to be placed in registers. I also tested the assignment with a
switch construct and with a if-else-tree construct but they were a little
bit slower than the loop construct due to the higher warp divergence
(Table A.1).

Listing 4.7: Dynamic assignment allowing register usage

int array[4];

// i is not known at compile time

int i = dynamicIndex();

for(int j = 0; j < 4; ++j){

if(i == j){

array[j] = 2;

}

}

// unrolled:

if(i == 0) array[0] = 2;

if(i == 1) array[1] = 2;

if(i == 2) array[2] = 2;

if(i == 3) array[3] = 2;

4.4 insertion into sorted list

Inserting one element into a sorted array is pretty straightforward. In
this example, the sorted array starts at index one and the new element
is inserted at index zero. Then, the new element is put into the correct
position by comparing it with the next element in the list and swapping
them if they were in the wrong order. However, there is still a choice
between bubbling up with and without early out:

4.5 sorting 35

Listing 4.8: Insertion with early out

for(int i = 0; i < SIZE - 1; ++i){

if(array[i] <= array[i+1]) break;

// swap

int tmp = array[i];

array[i] = array[i + 1];

array[i + 1] = tmp;

}

Listing 4.9: Insertion without early out

for(int i = 0; i < SIZE - 1; ++i){

if(array[i] > array[i+1]) {

// swap

int tmp = array[i];

array[i] = array[i + 1];

array[i + 1] = tmp;

}

}

The version without early out is faster for small arrays (size < 16) if a
lot of elements are inserted (see Powerplant times in Table A.2). The
early out is only effective if all cores within a warp are able to take it. If
that is not the case, the early out version is an additional overhead.
However, the insertion with early out is faster if less elements are
inserted because the early out is likely to be taken in all warp cores
(see Village times in Table A.2). Overall, the difference in time for one
insertion is so small, such that it does not matter which version is used.

Additionally, a version that used two moves instead of a swap was
tested as well (Listing A.1). However, the swap always performs better
which leads to the conclusion that the GPU probably has a register
swap instruction or is capable of doing register renaming11.

4.5 sorting

Some algorithms require an entire array to be sorted. The following
algorithms can be used to sort an array of fixed size in registers.

bubble sort

Bubble sort compares adjacent pairs and swaps them if they are in the
wrong order. This gets repeated until the array is sorted. The standard

11 register renaming eliminates false data dependencies which results in higher
instruction level parallelism

36 general optimizations

bubble sort implementation (Listing 4.10) is compatible with registers.
The early out condition (line 11) exits the loop if the array is sorted
prior to the last iteration. The version without the early out (line 11)
performs worse (see Table A.3).

Listing 4.10: Bubble Sort

1 for(int n = size; n > 1; --n) {

2 bool sorted = true;

3 for(int i = 0; i < n - 1; ++i) {

4 if(array[i] > array[i + 1]) {

5 int tmp = array[i];

6 array[i] = array[i + 1];

7 array[i + 1] = tmp;

8 sorted = false;

9 }

10 }

11 if(sorted) break;

12 }

insertion sort

Insertion sort is similar to sorting cards by hand. Each iteration, a new
element is inserted into an already sorted sequence until all elements
are sorted. The standard insertion sort implementation (Listing 4.11) is
not compatible with registers due to the dynamic array access in line 9.

Listing 4.11: Standard Insertion Sort

1 for(int i = 1; i < size; ++i) {

2 // i elements are sorted

3 int key = array[i];

4 int j = i - 1;

5 while(j >= 0 && array[j] > key) {

6 array[j+1] = array[j];

7 --j;

8 }

9 array[j+1] = key;

10 }

The dynamic access can be replaced with the code described in
Listing 4.7 (assigning within a loop) but this would result in two
consecutive loops (this will be referred to as insertion v1). Fortunately,
both loops can be combined into a single loop by simply swapping the
key value into its destination:

4.5 sorting 37

Listing 4.12: Register Insertion Sort (Insertion v2)

1 for(int i = 1; i < size; ++i) {

2 // i elements are sorted

3 for(int j = i; j > 0 && array[j - 1] > array[j]; --j) {

4 int tmp = array[j];

5 array[j] = array[j - 1];

6 array[j - 1] = tmp;

7 }

8 }

Figure 4.7 shows the speedup of using registers instead of local
memory.

shell sort

Shell sort is a variation of insertion sort. First, the list is roughly pre-
sorted by swapping elements from the left side of the array with
elements from the right side of the array. After the list was roughly
sorted, a normal insertion sort is performed. Since it swaps elements
that are far apart at the beginning, the final insertion sort should
perform better. Unfortunately, the standard shell sort implementation
(Listing 4.13) is not compatible with registers for the same reasons
insertion sort was not compatible.

Listing 4.13: Standard Shell Sort

1 // global

2 const int gaps[] = {20, 9, 4, 1};

3 const int startGap = SIZE > 20 ? 0 :

4 (SIZE > 9 ? 1 :

5 (SIZE > 4 ? 2 : 3));

6 const int maxGaps = gaps.length();

7 // main

8 for(int gapIdx = startGap; gapIdx < maxGaps; ++gapIdx) {

9 const int gap = gaps[gapIdx];

10 for(int i = gap; i < size; ++i) {

11 int key = array[i];

12 int j = i;

13 while(j >= gap && array[j - gap] > key){

14 j -= gap;

15 array[j] = array[j - gap];

16 }

17 array[j] = key;

18 }

19 }

Using the tricks from insertion sort for shell sort, the following register
compatible algorithm arises:

38 general optimizations

0

1

2

3

4

5

6

4 8 12 16 20 24 28 32

T
im

e
in

 m
s

Number of Elements

naive insertion
insertion v1

Figure 4.7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

4 8 12 16 20 24 28 32

T
im

e

Number of Elements

bubble
insertion v1
insertion v2

shell sort

Figure 4.8

Sorting algorithms tested on the GTX 980 TI. Naive insertion refers to the
insertion sort from Listing 4.11 which does not work in registers. Insertion v1

is the naive insertion sort that was modified to work in registers. Insertion v2

was introduced in Listing 4.12.

Listing 4.14: Register Shell Sort

1 // main

2 for(int gapIdx = startGap; gapIdx < maxGaps; ++gapIdx) {

3 const int gap = gaps[gapIdx];

4 for(int i = gap; i < size; ++i) {

5 for(int j = i; j >= gap && array[j - gap] > array[j]; j -= gap)

6 {

7 int tmp = array[j];

8 array[j] = array[j - gap];

9 array[j - gap] = tmp;

10 }

11 }

12 }

Results

The algorithms were tested for arrays between 4 and 32 elements (see
Figure 4.8). The register based insertion sort (Listing 4.12) outperforms
all other algorithms.

4.6 stencil buffer

The stencil test can mask out certain areas of the screen which
effectively prevents fragment shader invocations. The stencil test is
performed per fragment.

4.6 stencil buffer 39

MLAB uses a fullscreen pass to blend all per-pixel lists to retrieve
the final fragment color. However, the per-pixel lists only need to be
blended if any transparent fragments were inserted in the first place.
The stencil test can be used to create a mask that prevents unnecessary
fragment shader invocations for this scenario.

glStencilFunc(comparison, ref, mask) controls the condition for the
stencil test. The stencil test looks like this:

test = (ref & mask) comparison (stencil & mask)

stencil is the current value in the stencil buffer, mask is a user defined
bitmask, ref is the reference value for the stencil test and & is a bitwise
AND.

Some possible values for comparison are:

1. EQUAL: Test passes if (ref & mask) = (stencil & mask)

2. ALWAYS: Always passes.

3. GREATER: Test passes if (ref & mask) > (stencil & mask)

glStencilOp(sFail, zFail, zPass) describes how the stencil buffer is
modified for certain events.

sFail specifies the action to take if the stencil test fails.
zFail specifies the action to take if the depth test fails.
zPass specifies the action to take if the stencil test and the depth test

succeeded.
Some possible actions are:

1. KEEP: The stencil buffer value remains unchanged.

2. REPLACE: The stencil buffer value is replaced by ref which was
specified by glStencilFunc(...).

3. INCR: The stencil buffer value is incremented by one.

Listing 4.15 shows how to make use of the stencil test for MLAB.
First, the stencil buffer is cleared and the opaque geometry is drawn.
Thereafter, the stencil test (line 6-8) is configured to write a value of one
into the stencil buffer for each transparent fragment (see Figure 4.9).
Thus, the stencil test at the end will only succeed for pixels where
transparent fragments were drawn (line 11-13). Line 13 draws a quad
that covers the entire screen in order to spawn exactly one fragment
shader invocation for each pixel that was not masked out by the stencil
test.

40 general optimizations

Scene Stencil Buffer Transparent objects

Figure 4.9: The stencil buffer is used to create a mask from transparent object.

Listing 4.15: Stencil Test in MLAB

1 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | ←↩
GL_STENCIL_BUFFER_BIT);

2 drawOpaqueGeometry();

3

4 // set areas with transparent geometry to 1

5 glEnable(GL_STENCIL_TEST);

6 glStencilFunc(GL_ALWAYS, 1, 0xFF);

7 glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);

8 drawTransparentGeometry();

9

10 // only invoke shader if a 1 is in the stencil buffer

11 glStencilFunc(GL_EQUAL, 1, 0xFF);

12 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

13 drawFullscreenQuad();

14 glDisable(GL_STENCIL_TEST);

Unfortunately, the stencil test is not very effective for MLAB. The
fullscreen pass at the end gets faster but the overhead introduced by
the additional stencil test nullifies the gained performance (Table A.4).
However, algorithms with more expensive calculations in the fullscreen
pass, like UMLAB, should make use of the stencil test to increase
performance (Table A.5). The stencil test accelerates UMLAB for up to
5%.

5
U N S O RT E D M U LT I - L AY E R A L P H A B L E N D I N G

This chapter presents Unsorted Multi-Layer Alpha Blending (UMLAB),
an improved version of MLAB that requires less memory bandwidth
making it faster.

5.1 idea

The standard MLAB algorithm (Listing 3.1) requires a lot of memory
bandwith because the entire per-pixel list is rewritten after the insertion
of a single fragment. However, rewriting the entire per-pixel list is not
necessary because only the newly inserted fragment and the merged
fragment need to be stored.

5.2 algorithm

UMLAB does no longer store the per-pixel list in a sorted order to
avoid re-writing the entire per-pixel list after a fragment insertion.
This changes the algorithm for the fragment insertion (see Listing 5.1).
First, the two fragments with the highest depth values are determined
(line 10-33). Then, both fragments are merged similar to the standard
MLAB. Finally, only the inserted fragment and the merged fragment
are written into the per-pixel list (line 39-50). The inserted value is not
stored if it was involved in the merge.

Listing 5.1: UMLAB insertion

1 void insert(Fragment f){

2 Fragment frags[n + 1];

3 frags[n] = f;

4

5 // load per-pixel array

6 for(int i = 0; i < n; ++i)

7 frags[i+1] = LOAD(i);

8

9 // fragment with highest depth

10 Fragment maxFrag;

11 maxFrag.Z = -1.0;

12 int maxFragIdx = 0;

13

14 // fragment with second highest depth

15 Fragment smaxFrag;

16 smaxFrag.Z = -1.0;

41

42 unsorted multi-layer alpha blending

17 int smaxFragIdx = 0;

18

19 // find maximum

20 for(int i = 0; i <= n; ++i) {

21 if(frags[i].Z > maxFrag.Z) {

22 maxFrag = frags[i];

23 maxFragIdx = i;

24 }

25 }

26

27 // find other maximum

28 for(int i = 0; i <= size; ++i) {

29 if(frags[i].Z > smaxFrag.Z && i != maxFragIdx){

30 smaxFrag = frags[i];

31 smaxFragIdx = i;

32 }

33 }

34

35 // merge the two highest fragments

36 vec2 merged = merge(smaxFrag, maxFrag);

37

38 // store changed values

39 if(maxFragIdx == n) {

40 // the inserted value was merged

41 // just overwrite the second highest value

42 maxFragIdx = smaxFragIdx;

43 // prevent the inserted value from being stored

44 // (because it was merged)

45 smaxFragIdx = n;

46 }

47

48 STORE(maxFragIdx, merged);

49 if(smaxFragIdx != n)

50 STORE(smaxFragIdx, f);

51 }

Since the per-pixel is no longer sorted, it needs to be sorted before
blending all transparent fragments for the final color in the fullscreen
pass. This can be done with the register based insertion sort from
Chapter 4.

Additionally, the insertion of the first n fragments can be accelerated
since at least one initialization node is in the per-pixel list and
compression is not required. Listing 5.2 can be put after line 33 of the
UMLAB code to accelerate the insertion of the first n fragments.

5.3 results 43

Table 5.1: MLAB and UMLAB rendering times in milliseconds (NVIDIA GTX
1080). The interleaved SSBO was used for the Powerplant scene. A 3D Texture
was used for the other two scenes, because it was faster than the interleaved
SSBO. San Miguel times exclude the opaque rendering times.

scene(nodes): mlab umlab

Powerplant(4) 15.22 14.75

Powerplant(8) 16.94 15.40

Powerplant(12) 19.06 16.27

Village(4) 1.29 1.14

Village(8) 1.74 1.34

Village(12) 1.97 1.55

San Miguel(4) 2.19 2.15

San Miguel(8) 2.30 2.27

San Miguel(12) 2.54 2.36

Listing 5.2: UMLAB early insertion

1 // is a default value in this list?

2 if(maxFragIdx.Z == FLOAT_MAX) {

3 // only insert the new fragment (no need to merge)

4 STORE(maxFragIdx, f);

5 return;

6 }

5.3 results

UMLAB generally performs better than MLAB (see Table 5.1). Depending
on the scene, UMLAB is up to 30% faster (Village(8)).

6
A D A P T I V E T R A N S PA R E N C Y O P T I M I Z AT I O N S

Similar to MLAB, the standard AT algorithm requires a lot of memory
bandwidth because the entire per-pixel list is rewritten after the
insertion of a single fragment. The following algorithms try to reduce
the bandwidth by storing the nodes in a different way than AT.

First of all, the nodes are no longer stored in a sorted order
to avoid re-writing the entire per-pixel list after fragment insertion.
Unfortunately, that alone is not enough because AT modifies all nodes
with a bigger depth than the inserted fragment (see Figure 3.11). This
happens because each node stores the absolute height of the visibility
function. However, instead of storing the absolute height, storing the
relative height to the previous node is enough.

1

(1−α0)

(1−α0)(1−α1)

z0 z1

z

vis(z)

Figure 6.1: Example of the visibilty function.

Example: Take Figure 6.1. AT would store two nodes: (z0, (1− α0))
and (z1, (1− α0)(1− α1)). However, it would suffice to store: (z0, (1−
α0)) and (z1, (1−α1)). The original visibility function height of a node
can be reconstructed by multiplying the relative heights of all previous
nodes. If the nodes are stored this way, nodes with a bigger depth than
the inserted fragment do not need to be modified anymore.

Unfortunately, due to the node compression strategy of AT, the order
of nodes must be reconstructed within the shader to determine the
areas between nodes for the underestimation.

6.1 unsorted adaptive transparency

Unsorted Adaptive Transparency (UAT) stores the previously described
visibility nodes in an unsorted array. In the shader, the local node
array gets sorted according to the node depth. Afterward, the fragment
compression is performed similar to AT. Finally, up to two nodes are
written back into the global per-pixel list. Those nodes are the inserted

45

46 adaptive transparency optimizations

Table 6.1: AT and UAT rendering times (ms) in the Powerplant and the Village
scene (NVIDIA GTX 1080). The interleaved SSBO was used to store the nodes.

nodes at(pplant) uat(pplant) at(vill) uat(vill)

8 20.07 20.13 1.82 2.13

12 22.80 23.91 2.15 2.62

16 25.59 30.54 2.58 3.25

node and the node, that was compressed by the underestimation.
The inserted node replaces the node that was removed due to the
compression.

Unfortunately, the overhead from sorting the array before each
insertion dominates this algorithm (see Table 6.1). Thus, the default
AT was either equal to or faster than UAT in all tested scenes.

6.2 linked array adaptive transparency

Linked Array Adaptive Transparency (LAAT) stores for each node an
additional link to the next node to avoid using a sorting algorithm
with quadratic runtime (see Figure 6.2). The fragment insertion works
similar to the UAT fragment insertion. However, instead of sorting the
nodes, the ordering is reconstructed by loading the nodes according
to the linked list. After the fragment compression, up to three nodes
are written back into the global per-pixel list. Since the link to the
compressed node can change as well, LAAT stores one node more than
UAT.

Unfortunately, LAAT performs even worse than UAT (see Table 6.2).
The main drawback of LAAT is the reconstruction of the node ordering
from the linked list. Reading from random locations in global memory
seems to be a bad idea.

6.3 height adaptive transparency 47

-1

Cargo

3

Cargo

2

Cargo

1

Cargo

0

Cargo

-1

Cargo

3

Cargo

2

Cargo

Figure 6.2: Nodes for LAAT. In addition to the nodes cargo (depth and
transmittance) the index of the next node is included as well. An index of
minus one indicates the end of the per-pixel list.

Table 6.2: AT and LAAT rendering times (ms) in the Powerplant and Village
scene (NVIDIA GTX 1080). The interleaved SSBO was used for AT. The texture
was used for LAAT.

nodes at(pplant) laat(pplant) at(vill) laat(vill)

8 20.07 24.57 1.82 2.49

12 22.80 30.21 2.15 3.30

16 25.59 38.81 2.58 4.43

6.3 height adaptive transparency

For the next approach, a different node compression metric was tested.
Previously, the area between two nodes determined the node for
compression.

This compression metric minimizes the integration error by remov-
ing the node with the least contribution to the visibility function. The
integration error can be describes as:

Eintegration =

∫∞
0

(vist(z) − visc(z))dz

With vist(z) being the true visibility function and visc(z) being the
compressed function. However, the integration error is not the same
as the visible error because fragments are blended according to the
following formula:

Cvisible =

n−1∑
i=0

αicivis(zi)

Therefore, if we assume that all fragment colors are similar, the visible
error is proportional to:

Evisible =

n−1∑
i=1

αi (vist(zi) − visc(zi))

48 adaptive transparency optimizations

h

i = h(1−α0)

j = h(1−α0)(1−α1)

z0 z1

z

vis(z)

Figure 6.3: Underestimation (red) of the visibility function.

The uncompressed visibility function can be described as:

vist(z) :=
∏

∀(zi,αi):zi<z

(1−αi)

Thus, each node in the visibility function is the product of the
transmittance of fragments with a smaller depth value. Using this
information, the visible error caused by an underestimation can be
calculated as follows (see Figure 6.3):

vist(z1) = h(1−α0) = i

visc(z1) = h(1−α0)(1−α1) = j

α1 = 1−
h(1−α0)(1−α1)

h(1−α0)
= 1−

j

i

Evisible = α1(vist(z1) − visc(z1))

=

(
1−

j

i

)
(i− j) =

(i− j)2

i
(6.1)

h denotes the visibility function at z0 (h = vis(z0)). In this case, the
fragment affected by the underestimation was (c1,α1, z1). Therefore,
a compression at the node which causes the smallest visible error
Evisible should produce better results. However, the visible error for
a node is only correctly computed, if that node was not previously
compressed. Unfortunately, the error computed with Equation 6.1 is
smaller than the actual error, if the node (in this case (z0,α0)) was
previously compressed (proof: Section A.1). Therefore, it is likely that
the visible error is not kept minimal after multiple compressions.

The new node compression metric will be referred to as height metric
because i− j describes the height difference between two nodes. The
original node compression metric will be referred to as rect metric since
it uses the rectangular area between two nodes. In the following, the
rect metric and the height metric are compared.

Figure 6.4 shows a comparison of the two compression metrics. The
rect metric produces a smaller integration error but the height metric
is almost always better concerning the visible error.

6.3 height adaptive transparency 49

The new metric has an interesting characteristic that can be seen in
the graph: The first node is compressed by the rect metric because
the area between the first and the second node is relatively small.
However, the height metric decides to preserve the first node because
the difference in height to the second node is relatively high. The height
metric completely ignores the depth distance between two nodes.

Ignoring the depth has an advantage and a disadvantage. On one
hand, very close nodes from fragments with a high opacity are likely
to remain uncompressed (see Figure 6.5). This is generally a good trait,
because those fragments usually have a high contribution to the final
pixel color. On the other hand, underestimating large depth ranges
causes all future fragments that are within that range to be biased as
well (see Figure 6.5 bottom graph). This is bad if the fragments within
that range have a high contribution to the visibility function.

Figure 6.6 shows a comparison of the two metrics in the powerplant
and the village scene with 8 nodes. HAT performs better in both scenes.
Especially the roofs of the village scene are less biased in HAT. This
probably happens due to the high density of fragments in the roof
because AT is likely to merge important fragments if they are close
together.

50 adaptive transparency optimizations

Tr
an
sm
it
ta
n
ce

Depth

height
rect

visibility

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14 16

In
te

g
ra

ti
o
n
 e

rr
or

Number of nodes

height
rect

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16

V
is

ib
le

 e
rr

o
r

Number of nodes

height
rect

Figure 6.4: Comparison of the default compression metric (rect) and the new
compression metric (height) in a scene with 20 transparent fragments with
α ∈ [0.05, 0.25].

6.3 height adaptive transparency 51

Tr
an
sm
it
ta
n
ce

Depth

height
rect

visibility

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

2 4 6 8 10 12 14
V
is

ib
le

 e
rr

o
r

Number of nodes

height
rect

Tr
an
sm
it
ta
n
ce

Depth

height
rect

visibility

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

V
is

ib
le

 e
rr

o
r

Number of nodes

height
rect

Figure 6.5: Rect and height compression in a scene with tightly packed
fragments. The second scene contains 40 transparent fragments with very low
opacity (α ∈ [0.005, 0.01]).

AT8 AT8 Diff x2 AT8 AT8 Diff x4

HAT8 HAT8 Diff x2 HAT8 HAT8 Diff x4

Figure 6.6: AT and HAT comparison with 8 nodes.

52 adaptive transparency optimizations

6.4 unsorted height adaptive transparency

Unsorted Height Adaptive Transparency (UHAT) stores the AT nodes in
an unsorted array and compresses the nodes according to the height
metric. First of all, the height metric needs to be reformulated to be
compatible with the unsorted node storage. Note, that UHAT stores the
relative height of the visibility function in its nodes as described in the
beginning of Chapter 6. The visible error can be rewritten as follows:

Evisible = α1(vist(z1) − visc(z1))

= α1(h(1−α0) − h(1−α0)(1−α1))

= h(1−α0)α
2
1 (6.2)

= vist(z1)α
2
1 (6.3)

Unfortunately, Equation 6.2 requires the knowledge of all previous
nodes (h(1 − α0)) to determine the visible error. However, if we can
approximate the current visibility function vist(z), Equation 6.3 can be
used to calculate the error for a single node without the knowledge of
any other node.

An approximate visibility function can be described by an exponen-
tial function (see Figure 6.7). If all objects have the same opacity and are
uniformly distributed throughout the scene, an exponential function is
able to describe the visibility function without error. Two points are

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
an
sm
it
ta
n
ce

Depth

exp
visibility

Figure 6.7: Visibility function approximated by an exponential function.

needed to determine the exponential function equation f(x) = aebx.
The first point is f(zfirst) = 1 with zfirst being the depth of the first
node. The second point is f(zlast) = (

∏n−1
i=0 (1 − αi))/(1 − αlast) with

(zlast,αlast) being the last node. Thus, the exponential function de-
scribed by the two points is:

f(x) = exp

 log
∏n−1
i=0 (1−αi)
(1−αlast)

zlast − zfirst
(x− zfirst)

6.4 unsorted height adaptive transparency 53

Tr
an

sm
it
ta

n
ce

Depth

approx. vis.
height

unsorted
visibility

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16

V
is

ib
le

 e
rr

o
r

Number of nodes

height
unsorted

Tr
an

sm
it
ta

n
ce

Depth

approx. vis.
height

unsorted
visibility

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16

V
is

ib
le

 e
rr

o
r

Number of nodes

height
unsorted

Figure 6.8: HAT (green) and UHAT (blue) in a scene with evenly distributed
fragments (top) and unevenly distributed fragments (bottom). Approx. vis. is
the visibility function approximation based on the UHAT nodes.

The new insertion algorithm is described in Listing 6.1. Line 9-
29 determine the relevant parameters that are required to determine
the exponential function. Line 39-42 offers a fast insertion, if no
compression is required because one of the initialization values is
inside the per-pixel list. The exponential function (line 1-5) is initialized
in line 46-48. Thereafter, the node that produces the least visible
error according to Equation 6.3 is determined (line 52-62). Afterwards,
the predecessor of that node is determined (line 65-75). Finally, the
visibility function gets underestimated (line 78) and the changed nodes
are written back into the per-pixel list (line 81-88).

Listing 6.1: UHAT insertion

1 float g_visExponent = 0.0f;

2 float g_visOffset = 0.0f;

3 float vis(float x) {

4 return exp(g_visExponent * (x + g_visOffset));

54 adaptive transparency optimizations

5 }

6

7 void insert(Fragment f){

8 // determine visibility function

9 float maxDepth = depth;

10 float minDepth = depth;

11 float productAlpha = f.T;

12 float lastAlpha = f.T;

13 int maxIndex = n;

14 int minIndex = n;

15

16 Fragment fragments[n+1];

17 fragments[n] = f;

18

19 // load all fragments

20 for(int i = 0; i < n; ++i){

21 fragments[i] = LOAD(i);

22 productAlpha *= fragments[i].T;

23

24 // determine last node

25 if(fragments[i].Z > maxDepth) {

26 maxDepth = fragments[i].Z;

27 lastAlpha = fragments[i].T;

28 maxIndex = i;

29 }

30

31 // determine first node

32 if(DEPTH(fragments[i]) < minDepth) {

33 minDepth = fragments[i].Z;

34 minIndex = i;

35 }

36 }

37

38 // replace initialization values first

39 if(maxDepth == FLOAT_MAX){

40 STORE(maxIndex, f);

41 return;

42 }

43

44 // store visibility function

45 // avoid dividing by zero

46 const float e = 0.00000001;

47 g_visExponent = log(max(productAlpha / max(lastAlpha, e), e)) / max(←↩
maxDepth - minDepth, e);

48 g_visOffset = -minDepth;

49

50 // find the node with the smallest height difference.

51 // this node will be removed

52 float minHeight = FLOAT_MAX;

53 int removeIndex = 0;

54 Fragment removeFragment = fragments[0];

55 for(int i = 0; i <= n; ++i){

56 float height = vis(fragments[i].Z) * (1.0f - fragments[i].T) * ←↩
(1.0f - fragments[i].T);

6.4 unsorted height adaptive transparency 55

57 if(height < minHeight && i != minIndex){

58 minHeight = height;

59 removeIndex = i;

60 removeFragment = fragments[i];

61 }

62 }

63

64 // find the predecessor

65 int compressIndex = -1;

66 Fragment compressFragment;

67 compressFragment.Z = -1.0;

68 for(int i = 0; i <= n; ++i){

69 if(i != removeIndex &&

70 compressFragment.Z >= fragments[i].Z &&

71 fragments[i].Z <= removeFragment.Z) {

72 compressIndex = i;

73 compressFragment = fragments[i];

74 }

75 }

76

77 // adjust transmittance with underestimation

78 compressFragment.T *= removeFragment.T;

79

80 // store changed nodes

81 if(compressIndex == n){

82 STORE(removeIndex, compressFragment);

83 }

84 else {

85 STORE(compressIndex, compressFragment);

86 if(removeIndex != n)

87 STORE(removeIndex, f);

88 }

89 }

Figure 6.8 shows the results of UHAT next to the results of HAT. If
the visibility function is similar to an exponential function (Figure 6.8
top) both algorithms produce the same results. Otherwise, UHAT still
manages to produce good results which are similar to HAT (Figure 6.8
bottom).

Figure 6.9 shows the results of both renderers in the village and
powerplant scene. Overall, the approximation of the visibility function
in UHAT produces images that are very similar to images produced by
HAT for scenes with a medium amount of transparent objects (Village
and San Miguel). Scenes with a high amount of transparent objects
(e.g. Powerplant) are more difficult for UHAT and the difference to HAT

becomes visible.
UHAT is faster than AT/HAT due to the reduced memory bandwidth

usage (see Table 6.3). UHAT is up to 24% faster than HAT with 16 nodes.
Unfortunately, UHAT with 8 nodes is only about 3% faster. Therefore,
HAT is the better choice if only a small number of nodes (6 8) is

56 adaptive transparency optimizations

Table 6.3: AT and UHAT rendering times (ms) in the Powerplant and Village
scene (NVIDIA GTX 1080). The interleaved SSBO was used for the Powerplant
and the texture was used for the Village scene.

nodes hat(pplant) uhat(pplant) hat(vill) uhat(vill)

8 20.07 19.38 1.77 1.72

12 22.80 20.76 2.22 1.93

16 25.59 22.20 2.66 2.14

required for the scene because UHAT would produce a higher visual
error with very low performance gain. However, if a higher resolution
of the visibility function is required, UHAT provides a similar result as
HAT in less time.

6.4 unsorted height adaptive transparency 57

HAT8 Diff x6 MSE=0.00547 Reference

UHAT8 Diff x6 MSE=0.00557 HAT UHAT Diff x16

HAT8 Diff x2 MSE=0.029 Reference

UHAT8 Diff x2 MSE=0.035 HAT UHAT Diff x4

Figure 6.9: HAT and UHAT comparison with 8 nodes.

7
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis several methods to accelerate OIT algorithms were
investigated.

The interleaved SSBO and the 3D texture are fast data structures
that provide good data locality for concurrent computations. However,
it is still unclear under which circumstances the interleaved SSBO

performs better than the 3D texture. Furthermore, the data locality of
the interleaved SSBO can probably be improved by using a space filling
curve for node groups.

Using registers instead of shared memory for OIT algorithms
significantly improves the rendering time. Techniques like loop
unrolling are especially useful to ensure register usage. The register
based insertion sort provides a very fast method to sort small lists with
a fixed size.

Using the stencil buffer to mask out transparent areas is useful
for OIT algorithms with expensive calculations in the fullscreen pass.
UMLAB and UHAT are using the stencil buffer because both algorithms
perform a sort in the fullscreen pass.

UMLAB introduced a variation of MLAB that minimizes memory
bandwidth usage and therefore performs better than the original MLAB

algorithm.
In Chapter 6 I tried to accelerate an OIT algorithm that requires

its nodes to be sorted in order to work properly. Unfortunately, the
unsorted storage (UAT) and the linked array (LAAT) only introduced
more overhead to the existing algorithm.

HAT redefined the compression metric of AT to minimize the visible
error. In general, the error introduced by HAT is either similar or lower
than the error from AT and the performance is the same. Unfortunately,
I have not tested those techniques in a scene with fog or hair. Those
scenarios are interesting because ignoring the depth for the node
compression might be a bad idea for a scene with uniformly distributed
fog/hair.

UHAT is a faster alternative to HAT for constructing a higher
resolution visibility function (more than eight nodes). However, HAT is
still the better alternative for lower resolution visibility functions and it
produces transparency images with more accuracy in complex scenes.

MLAB and UMLAB are better techniques for OIT than AT and HAT. They
produce images with higher quality (Figure 7.1) in less time and they
need less nodes (between 4 and 8) for good results.

59

60 conclusion and future work

HAT 8: 1.75ms Diff MSE=0.0038 HAT 12: 2.19ms Diff MSE=0.0032

MLAB 8: 1.73ms Diff MSE=0.0025 MLAB 12: 1.93ms Diff MSE=0.0025

Figure 7.1: Comparison between HAT and MLAB. The diff-pictures describe the
difference to the sorted alpha blending solution multiplied by 8.

Note that everything was tested on the NVIDIA GTX 1080 and
the results may differ between different GPUs. However, most
optimizations should perform better on all GPUs. Registers are always
faster than local or global memory and higher data locality will always
maximize cache performance.

B I B L I O G R A P H Y

[BCL+07] L. Bavoil, S. P. Callahan, A. Lefohn, J. a.L. D. Comba, and
C. T. Silva. “Multi-fragment Effects on the GPU Using the
K-buffer.” In: Proceedings of the Symposium on Interactive 3D
Graphics and Games. I3D ’07. New York, NY, USA: ACM,
2007, pp. 97–104. isbn: 978-1-59593-628-8. url: http://
doi.acm.org/10.1145/1230100.1230117.

[BM08] L. Bavoil and K. Myers. Order independent transparency with
dual depth peeling. Tech. rep. 2008.

[Car84] L. Carpenter. “The A-buffer, an Antialiased Hidden
Surface Method.” In: Proceedings of the Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH
’84. ACM, 1984, pp. 103–108. isbn: 0-89791-138-5. url:
http://doi.acm.org/10.1145/800031.808585.

[ESSL10] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke.
“Stochastic Transparency.” In: Proceedings of the Symposium
on Interactive 3D Graphics and Games. I3D ’10. Washington,
D.C.: ACM, 2010, pp. 157–164. isbn: 978-1-60558-939-8.
url: http://doi.acm.org/10.1145/1730804.1730830.

[Eve01] C. Everitt. Interactive Order-Independent Transparency. 2001.

[Har13] M. Harris. How to Access Global Memory Efficiently in
CUDA C/C++ Kernels. https://devblogs.nvidia.com/
how - access - global - memory - efficiently - cuda - c -

kernels/. Accessed 2-July-2018. Jan. 2013.

[Hub91] D. Hubert. “Ueber die stetige Abbildung einer Linie auf
ein Flächenstück.” German. In: Mathematische Annalen 38

(1891), pp. 459–460.

[JB10] J. Jansen and L. Bavoil. “Fourier Opacity Mapping.” In:
Proceedings of the Symposium on Interactive 3D Graphics and
Games. I3D ’10. Washington, D.C.: ACM, 2010, pp. 165–
172. isbn: 978-1-60558-939-8. url: http://doi.acm.org/
10.1145/1730804.1730831.

[KN01] T.-Y. Kim and U. Neumann. “Opacity Shadow Maps.”
In: Proceedings of the Eurographics Workshop on Rendering
Techniques. Springer-Verlag, 2001, pp. 177–182. isbn: 3-211-
83709-4. url: http://dl.acm.org/citation.cfm?id=
647653.732282.

61

http://doi.acm.org/10.1145/1230100.1230117
http://doi.acm.org/10.1145/1230100.1230117
http://doi.acm.org/10.1145/800031.808585
http://doi.acm.org/10.1145/1730804.1730830
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
http://doi.acm.org/10.1145/1730804.1730831
http://doi.acm.org/10.1145/1730804.1730831
http://dl.acm.org/citation.cfm?id=647653.732282
http://dl.acm.org/citation.cfm?id=647653.732282

62 bibliography

[Kno15] P. Knowles. “Real-Time deep image rendering and order
independent transparency.” Doctor of Philosophy (PhD).
RMIT University, 2015.

[KLZ14] P. Knowles, G. Leach, and F. Zambetta. “Fast Sorting for
Exact OIT of Complex Scenes.” In: Vis. Comput. 30.6-8
(June 2014), pp. 603–613. issn: 0178-2789. url: http://
dx.doi.org/10.1007/s00371-014-0956-z.

[Kub15] C. Kubisch. Life of a triangle - NVIDIA’s logical pipeline.
https : / / developer . nvidia . com / content / life -

triangle-nvidias-logical-pipeline. Accessed 28-June-
2018. Mar. 2015.

[LWXW09] B. Liu, L. Y. Wei, Y. Q. Xu, and E. Wu. “Multi-layer
depth peeling via fragment sort.” In: Proceedings of the
IEEE International Conference on Computer-Aided Design and
Computer Graphics. 2009, pp. 452–456. doi: 10.1109/CADCG.
2009.5246861.

[LHLW09] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. “Efficient
Depth Peeling via Bucket Sort.” In: Proceedings of the
Conference on High Performance Graphics 2009. HPG ’09.
New Orleans, Louisiana: ACM, 2009, pp. 51–57. isbn: 978-
1-60558-603-8. doi: 10.1145/1572769.1572779. url: http:
//doi.acm.org/10.1145/1572769.1572779.

[MCTB13] M. Maule, J. a. Comba, R. Torchelsen, and R. Bastos.
“Hybrid Transparency.” In: Proceedings of the Symposium
on Interactive 3D Graphics and Games. I3D ’13. Orlando,
Florida: ACM, 2013, pp. 103–118. isbn: 978-1-4503-1956-0.
url: http://doi.acm.org/10.1145/2448196.2448212.

[MCTB12] M. Maule, J. L. D. Comba, R. Torchelsen, and R. Bas-
tos. “Memory-Efficient Order-Independent Transparency
with Dynamic Fragment Buffer.” In: Proceedings of the SIB-
GRAPI Conference on Graphics, Patterns and Images. SIB-
GRAPI ’12. IEEE Computer Society, 2012, pp. 134–141.
isbn: 978-0-7695-4829-6. url: http://dx.doi.org/10.
1109/SIBGRAPI.2012.27.

[MB13] M. McGuire and L. Bavoil. “Weighted Blended Order-
Independent Transparency.” In: Journal of Computer Graph-
ics Techniques (JCGT) 2.2 (2013), pp. 122–141. issn: 2331-
7418. url: http://jcgt.org/published/0002/02/09/.

[Mes07] H. Meshkin. “Sort-independent alpha blending.” In:
Perpetual Entertainment, 2007.

http://dx.doi.org/10.1007/s00371-014-0956-z
http://dx.doi.org/10.1007/s00371-014-0956-z
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://doi.org/10.1109/CADCG.2009.5246861
https://doi.org/10.1109/CADCG.2009.5246861
https://doi.org/10.1145/1572769.1572779
http://doi.acm.org/10.1145/1572769.1572779
http://doi.acm.org/10.1145/1572769.1572779
http://doi.acm.org/10.1145/2448196.2448212
http://dx.doi.org/10.1109/SIBGRAPI.2012.27
http://dx.doi.org/10.1109/SIBGRAPI.2012.27
http://jcgt.org/published/0002/02/09/

bibliography 63

[Mor66] G. Morton. A Computer Oriented Geodetic Data Base and a
New Technique in File Sequencing. International Business
Machines Company, 1966.

[MKKP18] C. Münstermann, S. Krumpen, R. Klein, and C. Peters.
“Moment-Based Order-Independent Transparency.” In:
Proceedings of Computer Graphics and Interactive Techniques
1.1 (May 2018), 7:1–7:20.

[NVI] NVIDIA. NVIDIA GeForce GTX 980 (whitepaper). url:
http://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce_GTX_980_Whitepaper_

FINAL.PDF.

[PD84] T. Porter and T. Duff. “Compositing Digital Images.” In:
SIGGRAPH Computer Graphics 18.3 (Jan. 1984), pp. 253–
259. issn: 0097-8930. url: http://doi.acm.org/10.1145/
964965.808606.

[SML11] M. Salvi, J. Montgomery, and A. Lefohn. “Adaptive Trans-
parency.” In: Proceedings of the Symposium on High Perfor-
mance Graphics. HPG ’11. Vancouver, British Columbia,
Canada: ACM, 2011, pp. 119–126. isbn: 978-1-4503-0896-
0. url: http://doi.acm.org/10.1145/2018323.2018342.

[SV14] M. Salvi and K. Vaidyanathan. “Multi-layer Alpha
Blending.” In: Proceedings of the Symposium on Interactive
3D Graphics and Games. I3D ’14. ACM, 2014, pp. 151–158.
isbn: 978-1-4503-2717-6. url: http://doi.acm.org/10.
1145/2556700.2556705.

[SA09] E. Sintorn and U. Assarsson. “Hair Self Shadowing and
Transparency Depth Ordering Using Occupancy Maps.”
In: Proceedings of the Symposium on Interactive 3D Graphics
and Games. I3D ’09. ACM, 2009, pp. 67–74. isbn: 978-1-
60558-429-4. url: http://doi.acm.org/10.1145/1507149.
1507160.

[VF14] A. A. Vasilakis and I. Fudos. “K+-buffer: Fragment
Synchronized K-buffer.” In: Proceedings of the Symposium
on Interactive 3D Graphics and Games. I3D ’14. ACM, 2014,
pp. 143–150. isbn: 978-1-4503-2717-6. url: http://doi.
acm.org/10.1145/2556700.2556702.

[VVPM17] A.-A. Vasilakis, K. Vardis, G. Papaioannou, and K.
Moustakas. “Variable k-buffer using Importance Maps.”
In: EG 2017 - Short Papers. Ed. by A. Peytavie and C. Bosch.
The Eurographics Association, 2017. doi: 10.2312/egsh.
20171005.

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://doi.acm.org/10.1145/964965.808606
http://doi.acm.org/10.1145/964965.808606
http://doi.acm.org/10.1145/2018323.2018342
http://doi.acm.org/10.1145/2556700.2556705
http://doi.acm.org/10.1145/2556700.2556705
http://doi.acm.org/10.1145/1507149.1507160
http://doi.acm.org/10.1145/1507149.1507160
http://doi.acm.org/10.1145/2556700.2556702
http://doi.acm.org/10.1145/2556700.2556702
https://doi.org/10.2312/egsh.20171005
https://doi.org/10.2312/egsh.20171005

64 bibliography

[YHGT10] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. “Real-
time Concurrent Linked List Construction on the GPU.”
In: Proceedings of the Eurographics Conference on Render-
ing. EGSR’10. Aire-la-Ville, Switzerland, Switzerland: Eu-
rographics Association, 2010, pp. 1297–1304. url: http:
//dx.doi.org/10.1111/j.1467-8659.2010.01725.x.

[YK08] C. Yuksel and J. Keyser. “Deep Opacity Maps.” In:
Computer Graphics Forum (Proceedings of EUROGRAPHICS
2008) 27.2 (2008), pp. 675–680. doi: 10.1111/j.1467-8659.
2008.01165.x.

http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2008.01165.x
https://doi.org/10.1111/j.1467-8659.2008.01165.x

A
A P P E N D I X

Table A.1: Naive insertion sort (Listing 4.11) with different dynamic index
assignments (for line 9). Rendering times in ms on the NVIDIA GTX 1080.

samples : direct loop switch if else

4 0.0584 0.0573 0.0573 0.0573

8 0.1116 0.1065 0.1096 0.1085

16 2.5999 0.2068 0.2410 0.2130

32 6.3600 0.8335 0.9789 1.0424

Table A.2: Insertion of a single element into a sorted sequence with and
without early out (see Listing 4.8 and Listing 4.9). Rendering times in ms
on the NVIDIA GTX 1080. MLAB was used and the insertion within the shader
was repeated 128 times for the Village and 16 times for the Powerplant
in order to measure a difference (the difference for one insertion was not
measurable).

village no early early pplant no early early

4 5.089 6.047 4 15.59 19.79

8 8.424 6.338 8 22.44 27.77

12 9.304 7.405 12 29.28 38.02

16 18.47 7.463 16 51.38 43.21

20 22.26 8.185 20 59.04 47.17

24 31.32 9.624 24 85.38 64.53

28 37.08 10.58 28 100.4 71.98

32 48.81 13.27 32 145.4 103.0

65

66 appendix

Listing A.1: Insertion with two moves

// array[1] to array[SIZE-1] are sorted

array[0] = newElement;

for(int i = 0; i < SIZE - 1; ++i){

if(newElement > array[i+1]) {

// swap

array[i] = array[i + 1];

array[i + 1] = newElement;

}

}

Table A.3: Bubble sort with and without early out (see Listing 4.10). Rendering
times in ms on the NVIDIA GTX 1080. Note, that the first two times are almost
identical and the version with early out is better in general.

samples : no early out early out

4 0.0527 0.0528

8 0.0983 0.0984

12 0.1502 0.1482

16 0.2396 0.2391

20 0.3127 0.2961

24 0.3836 0.3420

28 0.4456 0.4211

32 1.1093 0.5507

A.1 hat error with two underestimations 67

Table A.4: Rendering times in ms for MLAB with and without stencil test
(NVIDIA GTX 1080 Village Scene).

samples : no stencil stencil

fullscreen pass :

4 0.0543 0.0410

8 0.1034 0.0727

16 0.1956 0.1352

32 0.3901 0.2273

overall :

4 1.2483 1.2780

8 1.6906 1.7285

16 2.4279 2.4740

32 4.3837 3.9752

Table A.5: Rendering times in ms for UMLAB with and without stencil test
(NVIDIA GTX 1080 Village Scene).

samples : no stencil stencil

4 1.1551 1.1970

8 1.3855 1.3783

16 1.6916 1.6404

32 2.8426 2.6829

a.1 hat error with two underestimations

This section describes how the error for two succeeding underestima-
tions at one point (z0) is calculated by HAT and compares the calculated
error with the actual error. This example extends Figure 6.3 by one
fragment ((z2,α2)) with z2 > z1 > z0.
E1 describes the visible error after one underestimation at z0. The exact
same value will be computed by HAT as well.
E2 describes the visible error after the second underestimation at z0.
Ecomputed describes the error that is computed by HAT for the second
underestimation.

68 appendix

visc1(z) and visc2(z) describe the visibility function after the first and
the second underestimation respectively.

αi := 1−αi

E1 = α1(vist(z1) − visc1(z1))

= hα1(α0 −α0 α1)

E2 = α1(vist(z1) − visc2(z1)) +α2(vist(z2) − visc2(z2))

= hα1(α0 −α0 α1 α2) + hα2(α0 α1 −α0 α1 α2)

Ecomputed =

(
1−

visc1(z2)

visc1(z0)

)
(visc1(z0) − visc1(z2))

=

(
1−

hα0 α1 α2
hα0 α1

)
h(α0 α1 −α0 α1 α2)

= hα2(α0 α1 −α0 α1 α2)

⇒ Ecomputed < E2

Unfortunately, the error computed by HAT is smaller than the actual
error. Thus, the visibility function is probably compressed more often
at z0 than it should be. Therefore, it is likely that the visible error is not
kept minimal after multiple compressions.

	Front matter
	Title page
	Statutory Declaration
	Abstract
	Zusammenfassung
	Contents
	Acronyms

	1 Introduction
	2 Fundamentals
	2.1 Graphics Pipeline
	2.2 GPU Architecture
	2.3 Transparency
	2.4 Scenes

	3 Related Work
	3.1 Per-Pixel Lists
	3.2 Depth Peeling
	3.3 K-Buffer
	3.4 Per-Pixel Packed Arrays
	3.5 Other OIT Techniques
	3.6 Adaptive Transparency
	3.7 Multi-Layer Alpha Blending

	4 General Optimizations
	4.1 Storage
	4.2 Spinlock
	4.3 Register
	4.4 Insertion into Sorted List
	4.5 Sorting
	4.6 Stencil Buffer

	5 Unsorted Multi-Layer Alpha Blending
	5.1 Idea
	5.2 Algorithm
	5.3 Results

	6 Adaptive Transparency Optimizations
	6.1 Unsorted Adaptive Transparency
	6.2 Linked Array Adaptive Transparency
	6.3 Height Adaptive Transparency
	6.4 Unsorted Height Adaptive Transparency

	7 Conclusion and Future Work
	Bibliography
	A Appendix
	A.1 HAT Error With Two Underestimations

